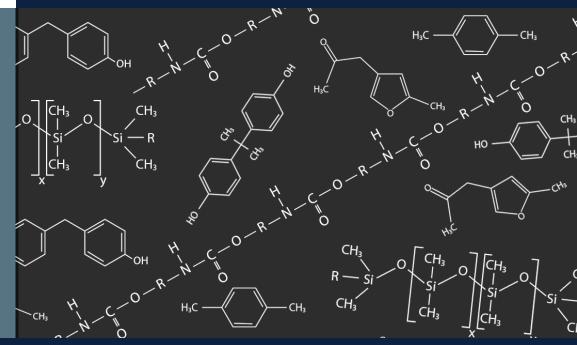


ONE COMPANY... MANY SOLUTIONS

AUTOMOTIVE AEROSPACE TRANSPORT MARINE


MEDICAL

TELECOMMUNICATIONS

CONSUMER ELECTRONICS

UTILITIES

EMI/RFI Shielding

ISO 9001:2008 Registered Quality System • SAI Global File #004008 • Burlington, Ontario, Canada

WHAT IS MG CHEMICALS?

MG Chemicals is a manufacturer and wholesaler of chemical products for the electronics industry. Our chemical products include dusters and circuit coolers, electronic cleaners, flux removers, contact cleaners, protective coatings, epoxies, adhesives, RTV silicones, lubricants, EMI/RFI shielding coatings, thermal management products, prototyping supplies, solders and more. We also distribute related non-chemical products such as wipes, swabs, brushes, desoldering braids, copper-clad boards and 3D printing filaments.

MG SERVICE

MG Chemicals understands that setting up production involves multiple challenges. Our service team has years of experience in production and equipment use, and understands the various technical issues you may encounter during planning, pilot studies and production runs. To overcome these challenges, we offer the following professional services.

MG Chemicals can

- Provide advice on equipment and materials
- Assist with setup and troubleshooting
- Review your proposed application processes
- Suggest ways of optimizing and customizing processes to best meet your needs
- Offer training on the proper use of our products

Quality Assurance

Since 1955, MG Chemicals has provided the North American electronics industry with a full line of high performance chemicals and accessories. The MG Chemicals manufacturing facility operates under the ISO 9001 Quality System Standard. All products undergo MG Chemicals' design process, including the testing and analysis of each product to maximize performance, user safety, environmental safeguards and market desirability.

Customer Care

Customer care is what separates MG Chemicals from the rest. Our commitment to all of these principles focuses on getting you the quality product and support you deserve.

TABLE OF CONTENTS

About EMI/RFI	4
Pigment/Resin Product Combination Selection Chart	5
Performance Comparison of Coating Bases	6
Performance Comparison of Coating Pigments	7
Acrylic Conductive Coatings	
Description / Features & Benefits	8
Applications & Usages	9
Total Ground™ Carbon Conductive Coating - 838AR	10
Super Shield™ Nickel Conductive Coating - 841AR	10
Super Shield™ Silver Coated Copper Conductive Coating - 843AR	11
Super Shield™ Silver Conductive Coating - 842AR	11
Acrylic Conductive Coatings Comparison Chart	12
Acrylic Conductive Coating Attenuation vs. Frequency Graph	13
Water Based Conductive Coatings	
Description / Features & Benefits / Applications & Uses	14
Super Shield™ Water Based Nickel Conductive Coating - 841WB	15
Super Shield™ Water Based Silver Coated Copper Conductive Coating - 843WB	15
Super Shield™ Water Based Silver Conductive Coating - 842AR	15
Water Based Conductive Coatings Comparison Chart	16
Acrylic Conductive Coating Attenuation vs. Frequency Graph	17
Epoxy Conductive Coatings	
Description / Features & Benefit /Applications & Uses	18
Super Shield™ Nickel Epoxy Conductive Coating - 841ER	19
Super Shield™ Silver Coated Copper Epoxy Conductive Coating - 843ER	19
Epoxy Conductive Coatings Comparison Chart	20
Epoxy Conductive Coating Attenuation vs Frequency Graph	21
All Products Conductive Coatings Comparison Chart	22
All Products Conductive Coating Attenuation vs. Frequency Graph	23

About EMI/RFI What is EMI/RFI?

Electromagnetic Interference (EMI) and Radio Frequency Interference (RFI) are two sides of the phenomena where electronic devices create and are affected by electromagnetic radiation. Often the terms RFI and EMI are used interchangeably, because radio waves are simply a subset of the electromagnetic spectrum. However, in practice, EMI generally refers to short range interference caused by high frequency emissions within the device itself, while RFI refers to longer wavelength interference from sources external to the device. EMI and RFI affect devices differently, but they are a related phenomenon and a common issue for today's electronics.

EMI/RFI are a growing problem in the modern world. Today's environment is filled with RFI. Radio, cell phone, and WIFI transmitters permeate space with signals. Solar activity and other sources from outer space also create significant radio wave noise. In addition, as devices become smaller, they are increasingly vulnerable to EMI, especially when the distance between circuits is less than one wavelength. This creates a challenge environment for electrical engineers.

What is EMC?

Electro-Magnetic Compliance (EMC) is a critical part of electronic design. EMC is achieved when a device is designed to be protected from external EMI/RFI, and does not significantly generate its own. Government bodies and industry organizations such as the Federal Communications Commission and the Society of Automotive Engineers have written comprehensive laws and guidelines for EMC that electronic devices must meet before being sold. Achieving EMC is no small task.

How is EMC achieved?

Most EMC is achieved through good circuit design. Opposing magnetic fields cancel each other out, therefore circuits are designed so that the field from one part nullifies the field from another part. However, this does not eliminate all EMI/RFI. EMI/RFI shielding is usually necessary to capture the residuals.

A basic example is shielded twisted pair wiring, where two wires are run in opposite directions and twisted together so that their electromagnetic fields cancel each other out. The twisted pairing is then put into a metal tube that eliminates residual emissions.

What is EMI/RFI Shielding?

The energy of an electromagnetic wave is reduced or "attenuated" when it passes through a conductive material. EMI/RFI shielding is a layer of conductive material. It may be designed to protect a device from its environment, or components of a device from each other. In both cases, conductive paints provide an effective solution.

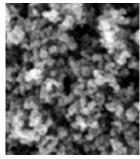
Metal enclosures inherently provide excellent EMI/RFI shielding, but most modern enclosures are plastic, offering no intrinsic protection. To achieve EMC, the inner surfaces of plastic enclosures are commonly coated with a conductive paint.

Board components are often shielded with metal caps, but with miniaturization there is not always room for one. However, cometimes a thin film of conductive paint can fit in tight places, and solve the problem.

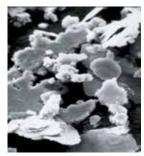
How is EMI/RFI Shielding Measured?

Attenuation is measured in decibels (dB) on a logarithmic scale. 10 dB of EMI/RFI shielding will reduce the energy of the incident wave by a factor of 10. 20 dB will reduce it by a factor of 100; 30 dB by 1000, and so on.

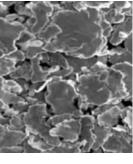
It is important to note that the shielding effectiveness of any material will differ depending on the wavelength of the radiation being shielded against. A measurement of shielding effectiveness is only useful if f the range of wavelengths being shielded against is known.

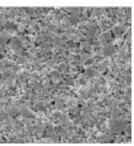

What does MG Chemicals offer?

MG Chemicals offers a range of conductive paints for EMI/RFI shielding and related applications.


Customers can choose between three chemistries

- **Acrylic** is the most common. It is widely used on electronic enclosures, satellite dishes and board level applications. It is easy to apply, durable, and adheres well to many surfaces.
- Water Based Urethane is the only choice in architectural applications because of its low VOC content. It is non-flammable, has no noxious vapors, and is not a dangerous good when shipped by air.
- **Epoxy** is used when extreme durability is needed. It offers mar and scratch resistance, very strong adhesion, extreme abrasion resistance, impact resistance, and strong chemical resistance.

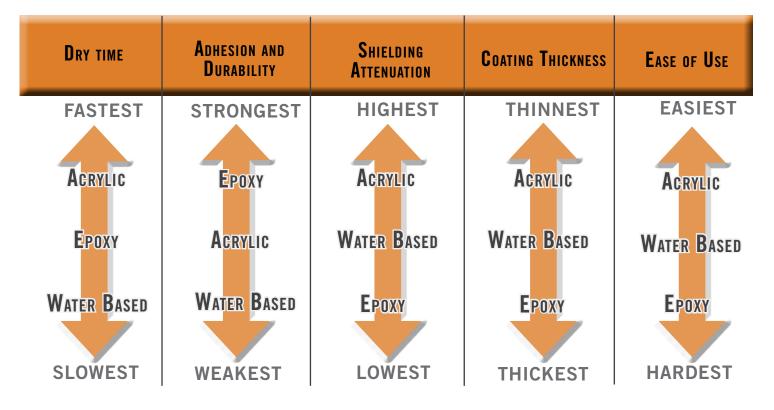

and four pigments:


• **Carbon** is best for low frequency shielding, musical instruments, and grounding.

• **Nickel** is suitable for most device-level shielding applications. It provides good shielding and excellent corrosion resistance.

• **Silver-coated copper** provides superior shielding at higher frequencies.

• **Silver** offers the best shielding and corrosion resistance. It is also the best choice for board level shielding and mission critical applications. It can be applied very thinly.


PIGMENT / RESIN SYSTEMS COMBINATION PRODUCT SELECTION CHART

		RESIN SYSTEM	
PIGMENT SYSTEM	ACRYLIC	WATER BASED URETHANE	EPOXY
CARBON	838AR	N/A	N/A
NICKEL	841AR	841WB	841ER
SILVER COATED COPPER	843AR	843WB	843ER
SILVER	842AR	842WB	N/A

PERFORMANCE COMPARISON OF COATING BASES

Each coating base comes with its own tradeoffs, depending on the application.

GENERAL CHARACTERISTICS

SUBSTRATE ADHESION

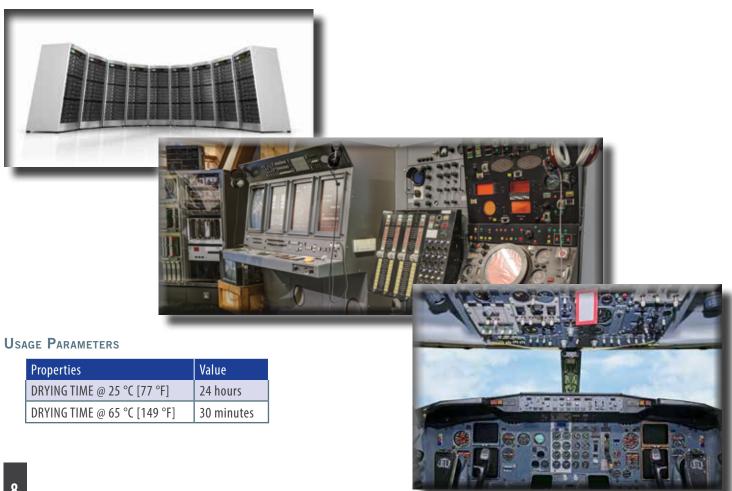
Each polymer system comes with its own adhesion strength, depending on whuch substrate it is applied to.

		Acrylic	Ероху	Water B ased
Acrylonitrile Butadiene	•	EXCELLENT	EXCELLENT	EXCELLENT
Poly	(CARBONATE (PC)	EXCELLENT	EXCELLENT	EXCELLENT
PolyVinyl	CHLORIDE (PVC)	EXCELLENT	EXCELLENT	EXCELLENT
Nylon	Nylon 66 (Polyamide) Polypropylene (PP)		EXCELLENT	EXCELLENT
Poly			POOR	POOR
	GLASS	POOR	EXCELLENT	POOR
	Metal	POOR	EXCELLENT	POOR
G-10 F	G-10 FIBERGLASS EPOXY		EXCELLENT	EXCELLENT
	DRY WALL	GOOD	GOOD	EXCELLENT

PERFORMANCE COMPARISON OF COATING PIGMENTS

Each conductive filler comes with its particular tradeoffs, depending on the application.

HIGH FREQUENCY SHIELDING/ELECTRICAL CONDUCTIVITY	Price	Corrosion resistance	SUITABILITY FOR ELECTROPLATING	Minimum coating thickness
HIGH	HIGHEST	HIGHEST	MOST	THIN
SILVER	Silver	CARBON	SILVER	SILVE R
Silver Coated Copper Nigkel	Silver Coated Copper Nigkel	Silver Nigkel	Silver Coated Copper Nigkel	Carbon Nigkel
CARBON	CARBON	Silver Goated Copper	CARBON	Silver Coated Copper
LOW	LOWEST	LOWEST	LEAST	тніск


Acrylic Conductive Coatings

Our AR series Acrylic Conductive Coatings are durable acrylic lacquers pigmented with highly conductive fillers. They provide effective EMI/RFI shielding over a broad frequency range and are an easy-to-use solvent-based system with no heat cure necessary. The cured coatings are smooth, hard, abrasion resistant, and adhere strongly to plastics.

They are available in four pigments: carbon, nickel, silver-coated copper, or silver, so customers can choose the most cost-effective solution for their application.

Benefits and Features

- Smooth, durable, and abrasion resistant conductive coating.
- Choice of four conductive pigments: carbon, nickel, silver-coated copper, or silver.
- Easily applied.
- Available in aerosol format.
- Quick dry time, no heat cure required.
- Service temperature range -40 to 120 °C.
- Mild solvent system.
- Strong adhesion to acrylic, ABS, polycarbonate, and other injection molded plastics.
- HAP Free; Does not contain toluene or xylene.

Applications & Usage

Our Acrylic Conductive Coatings are commonly used to suppress EMI/RFI in devices such as:

- Electronic enclosures
- Sensors
- Controllers
- Receivers
- Test equipment
- Scientific equipment
- Medical equipment
- Communication devices
- Satellite dishes and radar systems
- Antennas
- Aerospace equipment

- Electric vehicles
- Networking gear, firewalls
- Military equipment
- Cellphones, laptops, PDAs
- GPSs, navigation systems
- TVs, monitors and displays
- Consumer electronics
- Electronic sporting equipment
- Audio equipment
- Electric guitars and other amplified instruments
- Drones and other RC vehicles
- Cable boxes

Other applications for our Acrylic Conductive Coatings include:

- Board level shielding to prevent cross talk between circuits or components
- Repairing damage to existing shielding
- Conductive undercoating for electroplating
- Prototyping and repairing circuits
- Providing electrical continuity to a surface
- Protecting metal surfaces from oxidation
- Grounding

ENVIRONMENT RoHS Compliant Low-VOC

Acrylic Conductive Coatings

Total Ground™ Carbon Conductive Coating -838AR

838AR Total Ground[™] Carbon Conductive Coating is as an economical solution for grounding or low frequency RFI shielding applications, especially for electric guitars and other electronic instruments. It is ideal for RFI shielding in metal detectors and other devices affected by the presence of metal. It can also be used as the conductive inner coating in picture tubes, or as a resistor in circuitry. It functions as a conductive undercoat in some electroplating applications.

Super Shield™ Nickel Conductive Coating -841AR

841AR Super Shield[™] Nickel Conductive Coating is the standard choice for shielding plastic electronic enclosures, or for use on satellite dishes. It functions as a conductive undercoat in many electroplating applications.

- Provides >52 dB of EMI/RFI shielding at frequencies <1 MHz.
- Volume resistivity of 0.33 Ω·cm for liquid; 0.34
 Ω·cm for aerosol
- Can be applied by spray, aerosol, brush, or pen
- Strong corrosion resistance, suitable for marine environments

- Provides effective EMI/RFI shielding over a broad frequency range
- Volume resistivity of 0.0040 Ω·cm for liquid;
 0.0076 Ω·cm for aerosol
- Can be applied by spray, aerosol, brush, or pen
- Corrosion resistant, suitable for marine environments

Cat. Number	Packaging	Net V	Volume	Net \	Neight
838AR-340G	Aerosol	Not Est	Not Established		12 oz
838AR-900ML	Can	850 mL	1.79 pt	725 g	1.59 lb
838AR-3.78L	Can	3.6 L	3.8 qt	3.07 kg	6.77 lb

Cat. Number	Packaging	Net Volume		Net W	/eight
841AR-340G	Aerosol	Not Est	ablished	340 g	12 oz
841AR-150ML	Can	150 mL	5.0 fl oz	253 g	8.93 oz
841AR-900ML	Can	850 mL	1.79 pt	1.43 kg	3.16 lb
841AR-3.78L	Can	3.60 L	3.8 qt	6.07 kg	13.3 lb

Super Shield™ Silver Coated Copper Conductive Coating - 843AR

843AR Super Shield[™] Silver Coated Copper Conductive Coating provides superior EMI/RFI shielding to plastic electronic enclosures. It is suitable for some board level applications and functions. It functions well as a conductive undercoat in many electroplating applications.

Super Shield $\ensuremath{^{\text{-}}}$ Silver Conductive Coating - 842AR

842AR Super Shield[™] Silver Conductive Coating provides the highest level EMI/RFI shielding for electronic enclosures. It is suitable for board level applications and functions very well as a conductive undercoat in most electroplating applications.

- Provides strong EMI/RFI shielding over a broad frequency range
- Volume resistivity of 0.0003 Ω·cm for liquid;
 0.0014 Ω·cm for aerosol
- Can be applied by spray or aerosol
- Comes in ready-to-spray liquid format, no let down necessary
- Low VOC content, MEK-free

- Provides extreme EMI/RFI shielding over a broad frequency range
- Volume resistivity of 0.0001 Ω·cm for liquid;
 0.000076 Ω·cm for aerosol
- Can be applied by spray, aerosol, brush, or pen
- Extremely corrosion resistant, suitable for harsh marine environments
- Low VOC content, MEK-free

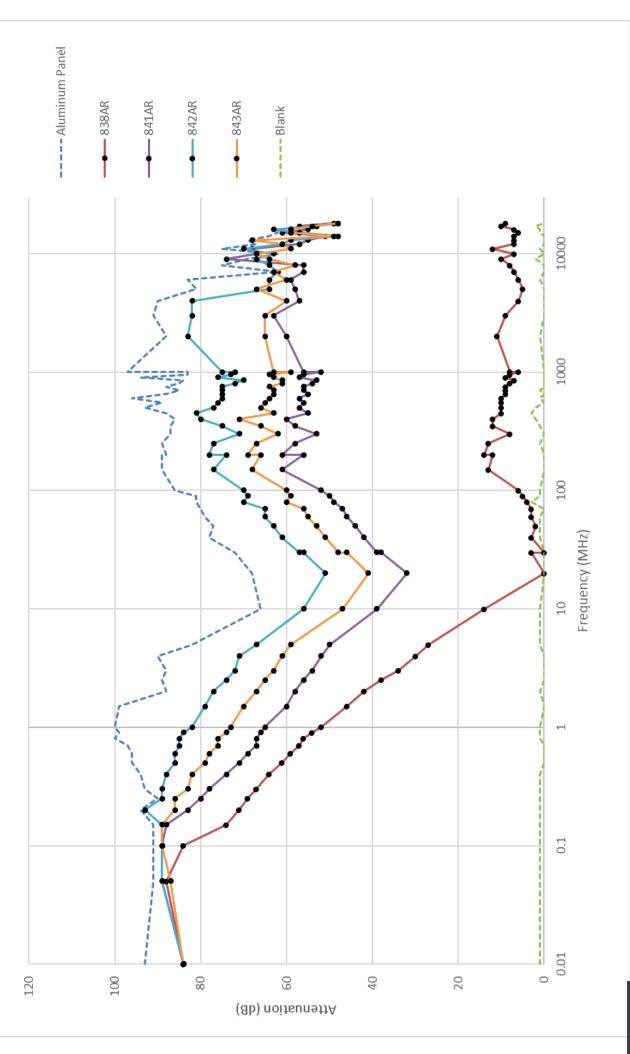
Cat. Number	Packaging	Net \	/olume	Net	Weight
843AR-340G	Aerosol	Not Est	Not Established		12 oz
843AR-900ML	Can	850 mL 1.8 pt		927 g	2.05 lb
843AR-3.78L	Can	3.60 L	3.8 qt	3.93 kg	8.66 lb

Cat. Number	Packaging	Net Volume		Net W	<i>l</i> eight
842AR-340G	Aerosol	Not Established		340 g	12 oz
842AR-150ML	Can	150 mL	5.07 fl oz	260 g	9.19 oz
842AR-900ML	Can	850 mL	1.79 pt	1.47 kg	3.25 lb
842AR-3.78L	Can	3.60 L	3.8 qt	6.26 kg	13.7 lb

Mechemicals Acrylic Conductive Coating Comparison Chart	ylic Conductive	Coating Comparis	son Chart	
Uncured Working Properties	838AR	841AR	843AR	842AR
Conductive Filler	C (carbon)	Ni (nickel)	Ag/Cu (silver coated copper)	Ag (silver)
Format	Liquid	Liquid	Liquid	Liquid
Color	Black	Dark grey	Light metallic brown	Metallic silver
Solids Percentage		5/%	31%	61% 1 7 2/ml
Viscosity @25 ℃ [77 ℃]	154 cP	1.7 g/mL 1.460 cD	1.1 g/mc /30 cP	1./ g/mL 873 cD
VOC Content	47%	14%	17%	12%
Shelf Life	3 y	3 у	3γ	3 y
Coverage & Application Properties				
Ready to Spray		No	Yes	No
Theoretical HVLP Spray Coverage	00 cm²/L	≤29 600 cm²/L	≤15 000 cm ² /L	≤59 600 cm²/L
Recoat Time		3 min	3 min	3 min
Drying Time @25 °C [77 °F]		24 h	24 h	24 h
Drying Time @65 °C [149 °F]		30 min	30 min	30 min
Cured Properties	838AR	841AR	843AR	842AR
Electrical Properties				
Volume Resistivity	c	0.0040 Ω·cm	0.00030 Ω·cm	0.0001 Ω·cm
Volume Conductivity		250 S/cm	3 300 S/cm	9 337 S/cm
Surface Resistance @1 coat		0.52	0.071 Ω/sq	<0.01 Ω/sq ^{a)}
@2 coats		0.38	0.018 <u>0</u> /sq	<0.01 Ω/sq ^{a)}
Attenuation from 0.01 to 18 000 MHz	25 dB	59 dB ± 12 dB	$65 dB \pm 11 dB$	73 dB ± 11 dB
Salt Fog Test @35 °C [95 °F], 96 h ^{b)}	Before: 70 Ω/sq	Before: 0.38 Ω/sq	Before: 0.08 Ω/sq	Before: <0.01 Ω /sq
	After: 70 Ω/sq	After: 0.51 Ω/sq	After: 3.3 Ω/sq	After: 0.05 Ω/sq
Thermal Properties				
Constant Service Temperature	-40 to 120 °C [-40 to 248 °F]	-40 to 120 °C [-40 to 248 °F]	-40 to 120 °C [-40 to 248 °F]	-40 to 120 °C [-40 to 248 °F]
Intermittent Temperature Limits	-50 to 125 °C [-58 to 257 °F]	-50 to 125 °C [-58 to 257 °F]	-50 to 125 °C [-58 to 257 °F]	-50 to 125 °C [-58 to 257 °F]
Mechanical Properties				
Adhesion ^{b)}	5B	5B	5B	5B
Pencil Hardness ^{b)}	H, hard	3H, hard	F, medium	3H, hard
Magnetic Properties				
Magnetic Class	Diamagnetic (non-magnetic)	Ferromagnetic (magnetic)	Diamagnetic (non-magnetic)	Diamagnetic (non-magnetic)
Value Permeability <pre></pre>			S1.U	0'T>

Values for conductive coatings in aerosol format will vary slightly. Please see product's TDS for exact values. a) Readings less than 0.01 Ω/sq are below the detection limit of the test apparatus b) Tested on acrylonitrile butadiene styrene (ABS)

340 g UTAL GROU 相相



3.78 L SUPER SHIELD

12

Acrylic Conductive Coating Attenuation vs Frequency Graph

13

Our WB series Water Based Conductive Coatings are urethane systems pigmented with highly conductive fillers. They are easy to use with no heat cure necessary. The cured coatings are smooth, durable, and adhere well to plastics, wood, metal and ceramics. They bond well to drywall and can be painted over with common latex paints.

They are available in three pigments: nickel, silver-coated copper, or silver. Customers can choose the most effective solution for their application.

Benefits and Features

- Provides effective EMI/RFI shielding over a broad range of frequencies
- Can be applied by spray gun, roll, or brush
- One-part ready-to-use system—no dilution required
- Excellent adhesion to drywall
- Can be painted over with common architectural paints
- Cures at room temperature
- Safe on delicate plastics
- Good adhesion to acrylic, ABS, polycarbonate, and other injection molded plastics
- Good adhesion to wood, ceramics, copper and aluminum
- Good environmental resistance
- Non-flammable
- No noxious odors
- Ships by air as a non-dangerous good
- Low regulated VOC content allows for use in architectural applications

Applications & Usage

WB series Super Shield[™] Water Based Conductive Coatings are designed to reduce Envirker in architectural and electronic applications.

Water based conductive paints are the only choice for architectural RFI shielding applications, because VOC regulations prohibit the use of solvent based systems. Such applications include containing RFI within a room (e.g. an engine room) to prevent interference in other rooms. Also, it can be used to protect a room containing sensitive electronic equipment from general sources of interference. Such rooms include server rooms, recording studios, laboratories, and surgical rooms, especially those near cell phone or radio towers.

The WB series is also great for providing EMI/RFI shielding to electronic enclosures, sensors,

test equipment, portable controllers, communication devices, and most applications where one would normally use solvent based shielding. They are also good for repairing conductive traces and electronic prototyping. Usage Parameters Properties RECOAT TIME (liquid) DRYING TIME @ 25 °C [

Properties	Value
RECOAT TIME (liquid)	30 minutes
DRYING TIME @ 25 °C [77 °F]	24 hours
DRYING TIME @ 65 °C [149 °F]	2.5 - 3 h

Super Shield™ Water Based Nickel Conductive Coating - 841WB

The 841WB Super Shield[™] Water basedSilver Conductive Coating provides effective shielding for electronic enclosures and in most common architectural applications.

- Provides effective EMI/RFI shielding over a broad frequency range
- Volume resistivity of 0.027 Ω·cm
- Corrosion resistant

Cat. Number	Packaging	Net V	olume	Net V	Veight
841WB-150ML	Can	150 mL	5.0 fl oz	271 g	9.58 oz
841WB-850ML	Bottle	850 mL	1.79 pt	1.83 kg	4.03 lb
841WB-3.78L	Can	3.60 L	7.6 pt	6.51kg	16.6 lb

Super Shield[™] Water Based Silver Coated Copper Conductive Coating - 843WB

843WB Super Shield[™] Water Based Silver Coated Copper Conductive Coating provides superior shielding to electronic enclosures and in architectural applications. It is also suitable for server rooms.

- Provides superior EMI/RFI shielding over a broad frequency range
- Volume resistivity of 0.00068 Ω•cm

Cat. Number	Packaging	Net	Volume	Net V	Veight
843WB-150ML	Bottle	150 mL	5.07 fl oz	195 g	6.88 oz
843WB-900ML	Can	850 mL	1.79 pt	1.1 kg	2.43 lb
843WB-3.78L	Can	3.78 L	3.8 qt	4.68 kg	10.3 lb

Super Shield[™] Water Based Silver Conductive Coating - 842WB

842WB Super Shield[™] Water Based Silver Conductive Coating provides excellent shielding for electronic enclosures and in architectural applications.

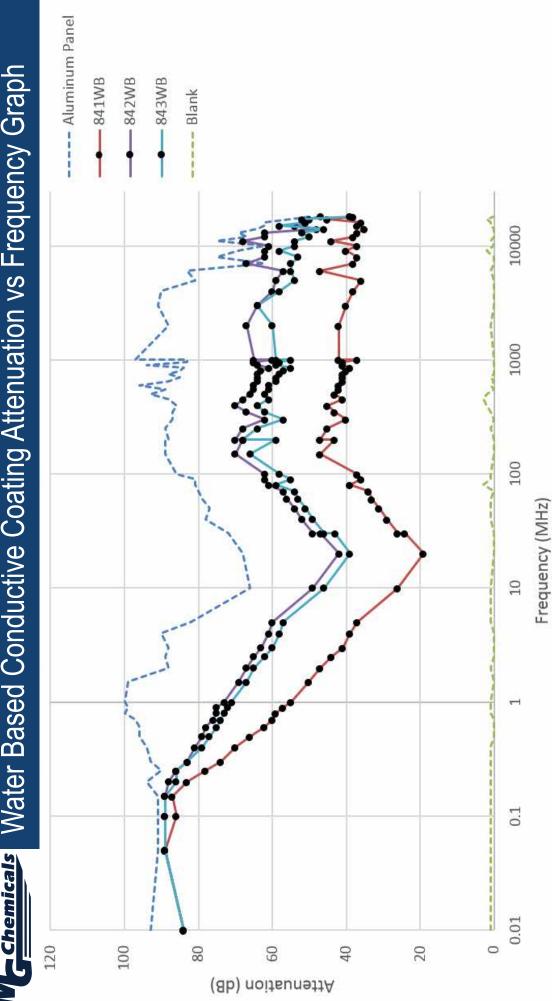
- Provides excellent EMI/RFI shielding over a broad frequency range
- Volume resistivity of 0.000075 Ω •cm
- Corrosion resistant

Cat. Number	Packaging	Net V	olume	Net	Weight
842WB-150ML	Bottle	150 mL	5.0 fl oz	224 g	7.93 oz
842WB-850ML	Can	850 mL	1.79 pt	1.27 kg	2.8 lb
842WB-3.78L	Pail	3.78 L	1 gal	5.66 kg	12.4 lb

®	- Chemicals	

16

Water-based Conductive Coating Comparison Chart


Uncured Working Properties	841WB	843WB	842WB
Conductive Filler	Ni (nickel)	Ag/Cu (silver coated copper)	Ag (silver)
Format	Liquid	Liquid	Liquid
Color	Grey	Light metallic brown	Silver
Solids Percentage	54%	42%	60%
Density @25 °C [77 °F]	1.8 g/mL	1.3 g/mL	1.5 g/mL
Viscosity @25 °C [77 °F]	143 CP	234 cP	195 cP
VOC Content	145 g/L	51 g/L	53 g/L
Shelf Life	1 y	1 y	1 y
Coverage & Application Properties			
Ready to Spray	Yes	Yes	Yes
Theoretical HVLP Spray Coverage	≤15 200 cm ² /L	≤42 200 cm ² /L	≤69 000 cm²/L
Recoat Time ^{a)}	30 min	20 min	20 min
Drying Time @25 °C [77 °F]	24 h	24 h	24 h
Drying Time @65 °C [149 °F]	3 h	2.5 h	3 h
Cured Properties	841WB	843WB	842WB
Electrical Properties			
Volume Resistivity	0.027 Ω·cm	0.00068 Ω·cm	0.000075 Q·cm
Volume Conductivity	37 S/cm	1 470 S/cm	13 300 S/cm
Surface Resistance @1 coat	1.4 Ω/sq	0.21 Ω/sq	0.04 Ω/sq
@2 coats	0.68 <u>0</u> /sq	0.11 Ω/sq	0.02 Ω/sq
Attenuation from 0.01 to 18 000 MHz	$46 \text{ dB} \pm 16 \text{ dB}$	61 ± 12 dB	65 ± 11 dB
Salt Fog Test @35 °C [95 °F], 96 h ^{b)}	Before 0.4 Ω/sq After 3 Ω/sa	TBD +	Before 0.012 Ω/sq After 0.081 Ω/sq
Thermal Properties			
Constant Service Temperature	-40 to 120 °C [-40 to 248 °F]	-40 to 120 °C [-40 to 248 °F]	-40 to 120 °C [-40 to 248 °F]
Intermittent Temperature Limits	-50 to 125 °C [-58 to 257 °F]	-50 to 125 °C [-58 to 257 °F]	-50 to 125 °C [-58 to 257 °F]
Mechanical Properties			
Adhesion on ABS	5B	5B	5B
Pencil Hardness on ABS	HB, hard	HB, hard	HB, hard
Magnetic Properties			
Magnetic Class	Ferromagnetic (magnetic)	Diamagnetic (non-magnetic)	Diamagnetic (non-magnetic)
Relative Permeability	≥100	<1.0	<1.0
TBD=To be determined			

IBUE to be determined a) Recoat time for plastic. Dry wall recoat times can be found on the TDS's.

Water Based Conductive Coating Attenuation vs Frequency Graph

Epoxy Conductive Coatings

Our ER series Epoxy Conductive Coatings are two-part systems pigmented with highly conductive fillers. They cure in 24 hours at room temperature or in two hours at 80 °C. The cured coatings are smooth and extremely hard. They are abrasion, scratch, and mar resistant. They also provide good chemical resistance and adhere strongly to plastics, including chemically resistant and low energy plastics.

They are available in two pigments: nickel or silver-coated copper.

Benefits and Features

- Provides excellent EMI/RFI shielding across a broad range of frequencies
- Extremely durable: vibration, abrasion and impact resistant
- Will not mar, scratch or flake
- Very strong adhesion to chemically resistant plastics and other difficult-to-bond-to materials
- Chemically resistant

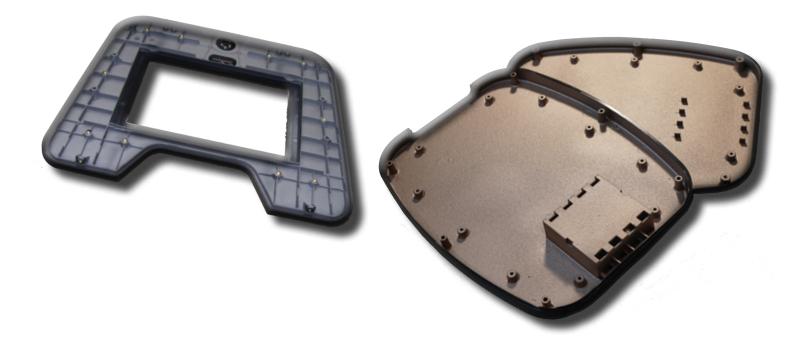
Applications & Usage

They provide a conductive coating that is extremely durable, physically and chemically.

They are suitable for use in miltary, automotive, aerospace and oil and gas industry applications, and on aluminum flanges.

They are an effective adhesive for electrostatic flocking, and may also act as a conductive base for electroplating, grounding, or for any process where it is necessary to create a durable conductive surface.

Super Shield™ Nickel Epoxy Conductive Coating - 841ER


841ER Super Shield[™] Nickel Conductive Coating provides effective shielding and grounding for shielding applications in extreme environments.

- Volume resistivity of 0.1 Ω·cm
- Corrosion resistant

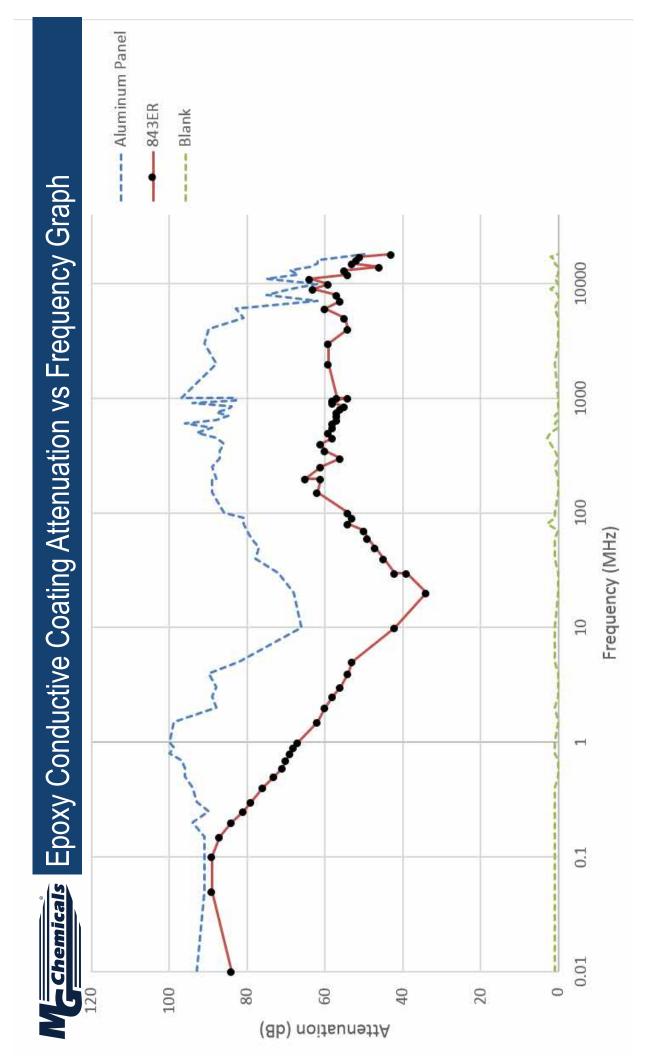
Super Shield™ Silver Coated Copper Epoxy Conductive Coating - 843ER

843ER Super Shield[™]Silver Coated Copper Conductive Coating provides the highest level of EMI/RFI shielding for electronic enclosures. It is suitable for board level applications. It functions very well as a conductive undercoat in most electroplating applications

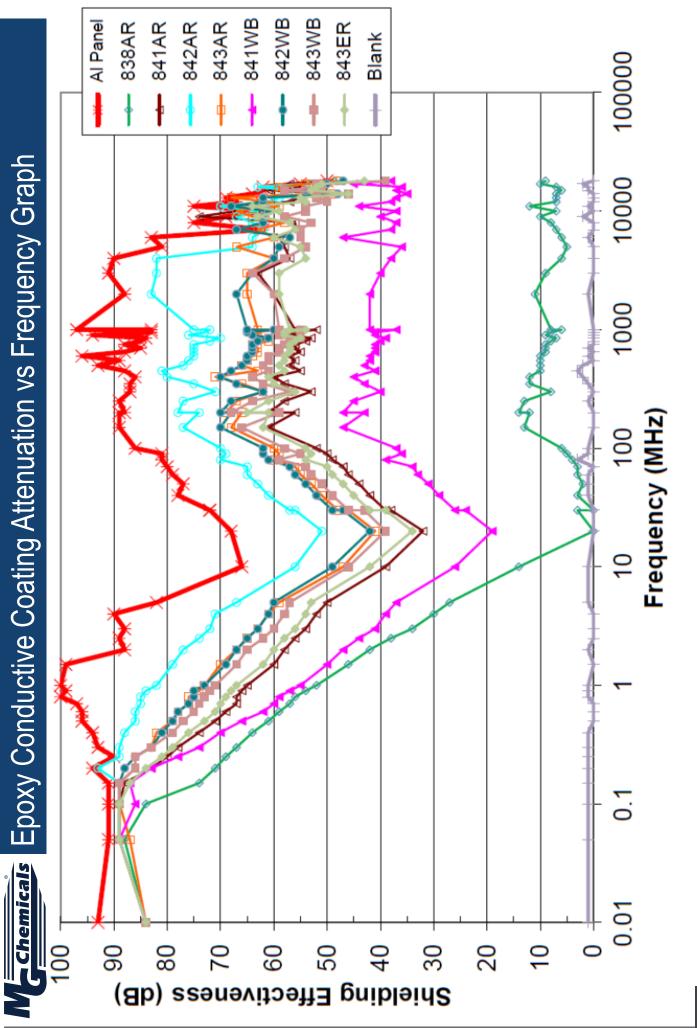
• Volume resistivity of 0.002 Ω·cm

Cat. Number	Packaging	Net V	Volume	Net	Weight
841ER-1.17 L	Can	1.17 L	2.47 pt	1.82 kg	4.24 lb
841ER-3.25L	Can	3.25 L	6.87 pt	5.34 kg	11.7 lb

Cat. Number	Packaging	Net V	′olume	Net V	Veight
843ER-800ML	Can	810 mL	1.71 pt	895 g	1.97 lb
843ER-3.25L	Can	3.25 L	6.87 pt	3.59 kg	7.92lb



20		
Mechemicals Epoxy Condu	Epoxy Conductive Coating Comparison Chart	art
Uncured Working Properties	841ER	843ER
Conductive Filler	Ni (nickel)	Ag/Cu (silver coated copper)
Format Color	Liquia Grev	Liquia Metallic brown
Mix ratio by weight	4:1,	100:28
Prix racio by volurite Solids Percentage	100:38 32%	30% 30%
	g/mL	1.0 g/mL 1.0 g/mL
Viscosity 受こう と「// 「」 VOC Content Shelf Life	200 cr (parka), 10 cr (parka) 49% 1 v	33 cr (part A), 3 cr (part B) 76% 1 v
Coverage & Application Properties		
Ready to Spray	Yes	Yes
Theoretical HVLP Spray Coverage	≤40 900 cm ² /L	≤31 100 cm²/L
Working Life @22 °C [/2 °F]	4 T 5 min	8 h min
Ambient Cure Time @22 °C [72 °F]		24 h
Elevated Cure Time	30 min @22 °C [72 °F] then	2 h @80 °C [176 °F]
	4h @65 °C [149 °F] then 1h @22 ºC 「72 ºF]	1 1
Cured Properties	841ER	843ER
Electrical Properties		
Volume Resistivity	0.1 Ω·cm	0.0018 Ω·cm
Volume Conductivity	11 S/cm	556 S/cm
Surface Kesistance @ L Coat のフ Coate	72 02/50 21 0/50	0.3 12/Sq
Attenuation from 0.01 to 18 000 MHz	ZI SZ/ 34 TBD	60 dB ± 12 dB
Salt Fog Test @35 °C [95 °F], 96 h	= =	Before: 0.15 Ω/sq After: 0.73 Ω/sq
Thermal Properties		-
Constant Service Temperature	-40 to 150 °C [-40 to 302 °F] -50 to 165 °C [-58 to 329 °F]	-40 to 120 °C [-40 to 248 °F] -60 to 130 °C [-76 to 266 °F]
Mechanical Properties		
Adhesion	5B a)	5B ^{b)}
Pencil Hardness	4H, hard ^{b)}	6H, hard ^{b)}
Magnetic Properties		
Magnetic Class Relative Permeability	Ferromagnetic (magnetic) ≥100	Diamagnetic (non-magnetic) <1.0
a) Tested on acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyvinyl chloride (PVC),	lyvinyl chloride (PVC), glass, and aluminum.	



hemicals 2

Conductive Coating Comparison Chart

		Acr	Acrulic		Fnorv	XV		Water Based	
			2						
Uncured Working Properties	838AR	841AR	843AR	842AR	841ER	843ER	841WB	843WB	842WB
Conductive Filler	: ניט	IZ .	Ag/Cu	Ag	Z	Ag/Cu	Z	Ag/Cu	Ag
Format	ridnia	Liquia	ridnia	ridnia	Liquid	ridnia	ridnia	ridnia	ridnia
	black	Dark grey	Metallic brown	Metallic silver	Grey	Metallic brown	Grey ۱	Metallic Brown	Silver
	T T	г	т 210/	T T T	2	2	L T 40'	1.001	L 1
Solids Percentage	15%CT	0// 2	51%		32%0	30%0 	54%0	42%0	60%
Density @25 °C	0.85 g/mL	1.7 g/mL	1.1 g/mL	1.7 g/mL	1.64 g/mL	1.0 g/mL	1.8 g/mL	1.3 g/mL	1.5 g/mL
Viscosity @25 °C	154 cP	1 460 cP	<30 cP	873 cP	200 cP (A), 18 cP (B)	35 cP (A), 9 cP (B)	143 cP	234 cP	195 cP
VOC Content	47%	14%	17%	12%	49%	76%	145 g/L ^{d)}	51 g/L ^{d)}	53 g/L ^{d)}
Shelf Life	2 y	2 y	2 y	2 y	1 y	1 y	1 y	1 y	1 y
Coverage/Application Properties									
Pool to Canad		210	Vec.			~~~		Vec	Vec.
Ready to Spray Theoretical HVI P Spray Coverage	N0 <25 300 cm ² /1	N0 <29.600 cm ² /I	res <15 000 cm ² /l	<pre><59 600 cm²/l</pre>	Yes <40 900 cm ² /I	res < 31 100 cm ² /l	res <15 200 cm ² /l	res <42 200 cm ² /I	1es <69 000 cm ² /1
Recoat Time	3 min		3 min	3 min	5 min	3 min	30 min ^{c)}	20 min ^{c)}	20 min c)
Cure/Drying Time @25 °C	24 h	24 h	24 h	24 h	5	24 h	24 h	24 h	24 h
Cured Properties	838AR	841AR	843AR	842AR	841ER	843ER	841WB	843WB	842WB
Electrical Deconstinct									
Volumo Docietivity	0.22 0.6m	0,0040,055		0.0001.0.cm	0.1.0.5m	0.0010.0.cm	0.07.0.5		0.00075.0.000
Volume Resistivity	0.33 22'CIII	0.0040 52'CIII	0.0005/cm	0.227 5 /cm	11 C/cm		27 C/cm	1 470 C/cm	112.22 C/0000.0
Volutite Contaccivity Surface Desistance @1 coat	170 O/ea				72 O/ea				
	60 0/sn	0.38 O/sn	0.018 0/sd	< 0.01 0/sd ^a)	21 0/sq	ps/or C.0	0.68 0/sn	0.11 0/sn	0.07 0/sq
Attenuation (0.01 to 18 000 MHz)	$23 dB \pm 25 dB$	$59 \text{ dB} \pm 12 \text{ dB}$	$65 dB \pm 11 dB$	$73 \text{ dB} \pm 11 \text{ dB}$	TBD	$60 \text{ dB} \pm 12 \text{ dB}$	$46 \text{ dB} \pm 16 \text{ dB}$	$61 \pm 12 dB$	65 ± 11 dB
Salt Fog Test @35 °C, 96 h ^{b)}	Before: 70 Ω/sq	Before: 0.38 Ω/sq	Before: 0.08 Ω /sd	Before: <0.01 Ω /sq	=	Before: $0.15 \Omega/sq$	Before 0.4 Ω/sq	TBD	Before 0.012 Ω/sq
	After: 70 Ω/sq	After: 0.51 Ω/sq	After: 3.3 Ω/sq^{-1}	After: 0.05 Ω /sq	=	After: 0.73 Ω/sq	After 3 Ω/sq	=	After 0.081 Ω/sq
Thermal Pronerties									
Constant Service Temperature	-40 to 120 °C	-40 to 120 °C	-40 to 120 °C	-40 to 120 °C	-40 to 150 °C	-40 to 120 °C	-40 to 120 °C	-40 to 120 °C	-40 to 120 °C
Intermittent Temperature Limits	-50 to 125 °C	-50 to 125 °C	-50 to 125 °C	-50 to 125 °C	-50 to 165 °C	-60 to 130 °C	-50 to 125 °C	-50 to 125 °C	-50 to 125 °C
Mechanical Properties									
Adhesion ^{b)}	5B	5B	5B	5B	5B	5B	5B	5B	5B
Pencil Hardness ^{b)}	H, hard	3H, hard	F, medium	3H, hard	4H, hard	6H, hard	HB, hard	HB, hard	HB, hard
Magnetic Properties									
Magnetic Class	Diamagnetic	Ferromagnetic	Diamagnetic	Diamagnetic	Ferromagnetic	Diamagnetic	Ferromagnetic	Diamagnetic	Diamagnetic
	0.12	0012	0.1.2	0.12	0012	0.1.2		0.1.2	0.1.>
				-					

TBD=To be determined. Values for conductive coatings in aerosol format will vary slightly. Please see product's TDS for exact values. a) Readings less than 0.01 0/sq are below the detection limit of the test apparatus. b) Tested on acylonitic butadiene styrene (ABS). c) Recost time for plastic. Dry wall recoat times can be found on product's TDS. d) Values for regulated VOC.

HEAD OFFICE

9347 - 193rd Street Surrey, B.C., Canada V4N 4E7 Phone 1-800-201-8822 1-604-888-3084 Fax 1-604-888-7754 Website mgchemicals.com

MANUFACTURING

1210 Corporate Drive Burlington, Ontario, Canada L7L 5R6 Phone 1-800-340-0772 1-905-331-1396 Fax 1-905-331-2682 Website mgchemicals.com

CUSTOMER SERVICE

NORTH AMERICA Phone 1-800-340-0772 Fax 1-800-340-0773 Email East SalesEast@mgchemicals.com Email west SalesWest@mgchemicals.com

EUROPE AND UK Phone +44 1663 362888 Email SalesUK@mgchemicals.com

INTERNATIONAL

 Phone
 1-604-888-3084

 Fax
 1-604-888-7754

 Email
 SalesIntl@mgchemicals.com

FOR SAFETY DATA SHEETS

mgchemicals.com/resources/datasheets

FOR TECHNICAL SUPPORT

mgchemicals.com/resources/technical-support Toll-free line 1-800-340-0772 or +1 905 331-1396