

Table of Contents

PPAP Package for:

Newark Electronics Customer Part Number: 28W4902 (TE Connectivity Part Number): 1718350-1

- Section A <u>Nondisclosure</u> Agreement
- Section # 1 Design Records
- Section # 2 Engineering Change Documents
- Section # 3 Customer Engineering Approval
- Section # 4 Design FMEA
- Section # 5 Process Flow Diagrams
- Section # 6 Process FMEA
- Section # 7 Control Plan
- Section # 8 <u>Measurement Systems Analysis Studies</u>
- Section # 9 Dimensional Results
- Section # 10 <u>Material, Performance Test Results</u>
- Section # 11 Initial Process Study
- Section # 12 Qualified Laboratory Documentation
- Section # 13 Appearance Approval Report
- Section # 14 Sample Product
- Section # 15 <u>Master Sample</u>
- Section # 16 Checking Aids
- Section # 17 Records Of Compliance With Customer-Specific Requirements
- Section # 18 Part Submission Warrant
- Section # 18a Bulk Material Requirements

Nondisclosure Agreement

If a nondisclosure agreement has been reached with your company, it will be included on the following page(s). Please review the terms of this agreement to ensure that further actions associated with information contained within this PPAP package do not violate these terms.

If a nondisclosure agreement HAS NOT been reached, certain documents deemed confidential by TE Connectivity will not be included in this PPAP package. These documents include but are not limited to the Design FMEA, the Process Flow Diagram, the Process FMEA and the Control Plan. These documents can be reviewed by you company but cannot be retained.

Section 1 Design Records

			8			7			6		5				
	THIS DRAWING IS U VERTRAULICHE UNVEROEFF C COPYRIGHT 2003	NPUBLIS FENTLICHT T	HED. <u>E ZEICHNUNG</u> Tyco Electronics AMP GmbH	RELEASED FOR PUB FREI FUER VEROEFFENTI ALL RIGHTS ALLE RECHTE V	LICATION LICHUNG RESERVED. /ORBEHALTEN.	2003	MATED W ITH: PASSEND ZU:	_		1					
			9	.2 ^{±0.2}	>		L +0.2 -0.4			-1					
						7.5-0.2			±0.3	-					
					3.6	5±0.1		A ±0.15	$- B^{\pm 0.2}$	-					
										2					
														\cap	\cap
							ATT IN D					<			
D							D [(0.2	· † ±0			
						EI							[
					(0.5)								1.83 ^{±0.0}	05	
	0.0							~							
	-			\wedge					\bigwedge						
			<u> </u>					/							
				<u> </u>											
	1.2														
С															
										— max.0.3 ((<u>UT OFF)</u>				
				[
	_				WIRE- CRI Draht- Crim	MP (Standar	RIMP	SINGLE WIRE Finzeldichtungs	CRIMP - Crimp						
							Crimp								
					B-B			- - H'	±0.3						
					⊢ +	-0.3	H ^{±0.3}								
							A A								
					0.3	±0.3	(±0.3								
						, , , , , , , , , , , , , , , , , , ,			+						
	2177610_3	Λ										H = 4.4			
В				1 ∩_1 ⊑	1 9_7 /.	ſılsn <i>l</i> .	 	TIN PLATED		A = 3.0 $R = 2.0$	L = 2.0 $ G = 2.9$	$\left \begin{array}{c} K = 4.3 \end{array} \right $	 16 R		
	2177210 1		-	. (− . <u>)</u>	,,,−∠,,4	LUS114		verzinnt	TIN PLATED	$\begin{bmatrix} \nu - 2.0 \\ 1 \end{bmatrix}$	$D_{m} = 1.35$	$D_{1S0} = 2.9$			
	21//0IV-I		_						verzinnt					NG yster	
			_					TIN PLATEN		A = 2.6	L = 2.0	K = 4.2		AL I	
	-	-	_	V.5 - V.75	1.4-1.9	LUSN4	LUSAV.15/0.20	verzinnt	TIN DIATED	= 2.0	= 2.1 $ = 11$	$D_{1S0} = 2.7$	16.3	- SE	
	2141116-1	A	-							L – U.4		M = 0.8		/ IRE	
	2141114-3	B	_	-					4	A = 2.6	E = 1.8	H = 4.2			
	-	_	-	0.25-0.35	1.1-1.6	CuSn4	CuSn0.15/0.20	verzinnt	3	B = 2.0	G = 1.8	$D_{1S0} = 2.6$	16.3	NGL	
	2141114-1	A	_						TIN PLATED	L = 6.4		M = 0.8			
	1718352-3	_	_						4	A = 3.0	E = 2.6	H = 3.7			
	1718352-2	_	_	1.0-1.5	1.9-2.4	CuSn0.15/0.20	CuSn0.15/0.20	TIN PLATED		B = 2.0	G = 2.9	K = 3.9	16.3		
	1718352-1	_	_					verziiiii	TIN PLATED	C = 6.1	D _{Dr} = 1.35	M = 0.2			
	1718350-3	R	1718390-3						ver2000		F _ 2 0	H = 2.7			
	1718250 2	R	1718200 2	Λ ς_Λ 7ς	1 / 1 0	 15 /0 20		TIN PLATED		A = 3.0 R = 2.0	$ \begin{bmatrix} L = 2.0 \\ G = 2.1 \end{bmatrix} $	K = 2.9	16 7	Dun.	
			1710J7V-Z	(/ . V – L . V	1.4 - 1.7			verzinnt	TIN PLATED	$\begin{bmatrix} \upsilon & - & 2.0 \\ \Box & = & 6.1 \end{bmatrix}$	$D_{p} = 1.1$	$D_{1S0} = 1.6$		-R Leit	
А		∣ ∧ I B	1/10340-1						verzinnt		י יע '	I ^{VI} = U . 2			
	17/18348-3	A	1703698-3					TIN DIATED	<u> </u>	A = 2.6	E = 1.8	H = 2.6 K = 2.6			(B10)
	1'/18348-2	A	1'/03698-2	0.25-0.35	1.1-1.6	LuSn0.15/0.20	LuSn0.15/0.20	verzinnt		B = 2.0		$D_{1S0} = 1.4$	15.3		
	1718348-1	A	1703698-1						verzinnt			M = 0.2			
	ORDER NO.		ORDER NO.	WIRE RANGE	 insulation-∅	BOD Y Kontaktkoerper	TAB Flachstecker	BOD Y Kontaktkoerper	TAB Flachstecker	LENGTH Laenge	WIRE CRIMP Drahtcrimp	INSULATION CRIM Isolationscrimp		FOR FOR	
	strell-Nr.	REV	Bestell-Nr.	Urahtgroessen- bereich	Isolation-Ø	MATE	RIAL	SURF	ACE		CRIMP DIMENSIO	NS	MENS 1ASS ` [mm]	SULA ⁻ I MP stationc fuer	
	Bandware		Einzelausfuehrung	(mm ²)		Werk	stoff	Oberfl	aeche		cı:ımpabmessunger (mm)	1		L S C R C R	
	4805 (3/11)												1		

LASER WELDED Lasergeschweisst

4

REVISION STATUS Revisionsstand

CONTACT AREA TAB MIN. 0.8 µm SELECTIV GOLD OVER Ni Kontaktzone selectiv vergoldet min.0.8 µm ueber Ni

CONTACT AREA TAB MIN. 2.0 µm SELECTIV SILVER Kontaktzone selectiv versilbert min.2.0 µm

SEE APPLICATION SPECIFICATION TE-SPEC. 114-18464 7 siehe Verarbeitungsspezifikation

Section 2

Engineering Change Documents

Product Change Notification

Current Date: 25-Jun-2020

TE Connectivity

Product Change Notification: P-20-019205

PCN Date: 19-JUN-20

TE would like to inform you of the following change(s) to the listed TE Connectivity Product. In case of any further questions about this change(s), please contact your TE Connectivity Sales Engineer. Affected part, drawing and/or specification numbers are listed on the attached sheet(s).

General Product Description: MCON 1.2 CB TAB STC SN

Description of Changes

TE Connectivity is informing you of new duplicate stamping production tool (11-1949806) for Pegg Road plant to support MCON 1.2mm Clean Body Male Tab production in North America. This die includes part numbers 1718348-1 and 1718350-1 and PNs will be used in corresponding harness assemblies. This notification is to also inform customer of a ship point change from PA02 (PADC: Mechanicsburg, PA) to NCO1 (NCDC: Greensboro, NC) for all orders. Final harness assembly location will remain unchanged.

eason for Changes:										
oduct improvement. Capacity. As a result of our continuous strive for improving our delivery and meet our customers' demand needs in NA, we hereby inform you of a new apacity die to support our customers. There will be no change to Form-Fit-Function of terminal or harness.										
stimated Dates:										
Last Order Date (Obsolete Parts Only):	First Date To Ship (Changed Parts Only):									
	16-NOV-2020									
Last Ship Date (Obsolete Parts Only):	st Ship Date (Obsolete Parts Only): Last Date for Mixed Shipments: (Changed Parts Only):									
	No Mixed Shipments									

Part Number(s) being Modified:

Part Number	Part Discontinued per	Customer	Alias Part	Substitute Part	Substitute Alias Part	Description Of
Fart Number	PCN	Drawing	Number(s)	Number	Number(s)	Difference
<u>1557815-1</u>	NO					
<u>1557853-4</u>	NO					
<u>1557853-5</u>	NO					
<u>1557853-6</u>	NO					
<u>1718348-1</u>	NO					
<u>1718350-1</u>	NO					
<u>2309720-3</u>	NO					
<u>2316978-1</u>	NO					
<u>2316979-1</u>	NO					
<u>2316980-1</u>	NO					
<u>2316981-1</u>	NO					
<u>2318729-1</u>	NO					
<u>2332133-1</u>	NO					

Section 3

Customer Engineering Approval

AAF214, Rev. D, 23-Jun-2017

				Cus	tomer Informa	ation			Supplier Information											
										Connector Su	pplier Name:	TE Connectivit	ty							Conne
	Testing Purpose:	Product Val	lidation Plan		GM Connector Part N/A Number(s)					Supplier Part Number(s) 1718348-1 and 1718350-1										Conne Siz
	EWO Number:						Terminal Information								/	\sim	Pa			
	Model Year: N/A										Primary Termir	nal	Se	condary Term	inal			(A)	\sim	Besch
	First Using Program: N/A Application: MCON 1.2 CB TAB STC Notes: This PV Plan is to validate a capacity assembly die for terminal part number 1718348-1 and 1718350-1.				GM Terminal	M Terminal Part Number 1718348-1 and 1718350-1 Terminal				Terminal Part No	rt									
					Other Information			TE Conn. 1.2	1.2	1718348-1								Temper		
					Wire Type Tool Number 11-1949806 Tool Revision Number					TE Conn.	1.2	1718350-1					Ŝ.			Vibratic
																	//			Sealing
						Tool Location Pegg Road, Greensboro, North Carolina														Connec Class:
			Primary Terminal or Conr						l or Connector (****)					Secondary Terminal/Con				nal/Con		
					Sample Description				-			Test Results			Sample De	escription			-	
	Test Item	Test Requirement	Acceptance Criteria	Minimum Sample Size	Terminal Size (mm)	Wire Size	Test Number	Test Start Date	Lest Completion Date	Minimum	Maximum	Average	Standard Deviation	Pass/Fail	Terminal Size (mm)	Wire Size	Test Number	Test Start Date	Lest Completion Date	Minin
							Terminal to Terminal Engagement Force (Section 4.2.3) Test Sequence 26C								6C					
nal Il Tests	Pre Test Visual Examination (3.4)	Visually examine each test specimen before testing or conditioning	There shall not exhibit any evidence of deterioration, cracks and/or other deformities that could affect performance, function and/or appeearance		1.2 mm	N/A					No E	Defects		Passed						
Termin	Terminal to Terminal Engagement Force (4.2.3)	Insert male terminal at a rate of 50mm/min	Reference Only	10 Terminal Pairs	1.2 mm	N/A		December 2020	December 2020	2.60 N	3.07 N	2.88 N	0.13	Passed			_			
Mecha	Post Test Visual Examination (3.4)	Visually examine each test specimen after testing, note any obsevable changes, such as swelling, corrosion, discoloration, physical distortion, cracks, etc.	tamine each test specimen after e any obsevable changes, such corrosion, discoloration, physical distortion, cracks, etc. which could affect the functionality of the part								Pa	ssed		Passed						

	Con	nector Informa	ation	GM Approval					
nector /pe:	Sealed		Unsealed	х	Pretest:				
nector ize:	N/A - T	erminal							
art ription:	МСС	ON 1.2 CB TAB	STC						
				Jacob Bushon					
				GM CVE 09AP20					
erature (Class: T3								
on Clas	s: Connector De	ependent		Post Test:					
g Class:	S1				Jacob P Bushon				
CLUI IVIA	ing Force	N/A							
					GM CVE - 11DEC20				
nnector	(****)								
		Test Results			Notos				
imum	Maximum	Average	Standard Deviation	Pass/Fail	Notes				

ENGINEERING SAMPLE EVALUATION REPORT

PART NAME: MCON 1.2 CB TAB STC SN		PART NO.: TE PN: 1718350-1 (8V5T-14421-AFA)					
		CHANGE TYPE:	CHECK APPLICABLE:				
SUBMITTED BY: Andrew Hjelt	CURRENT MANUFACTURING SITE: FUTURE MANUFACTURING SITE: TE-Greensboro, NC (Pegg Rd)	TOOL MOVE: PROCESS CHANGE: MATERIAL/MATERIAL SUPPLIER CHANGE: CAPACITY TOOL:	MADE TO DRAWING DATED: 12/17/2019				
SUPPLIER: TE Connectivity J6DRY		DATE SUBMITTED: 12/11/2020					
Qualification of new capacity die tool, Die	# 11-1949806, to produce the terminal 1718350	-1,MCON 1.2 CB TAB STC SN.					
APPROVED: PRODUC	CT ENGINEERING SIGNATURE*:	2	^{date:} Dec 11, 2020				
IDENTI	FY WITH VREMARKS AFFECTING PRODUCT E	NGINEERING CRITICAL REQUIREMENTS					
*By signing this document, you s	state that you have verified the physical part/s with the c	drawing/s and agree with key dimensional data, not	es and appearance.				

Design Verification	Plan and	Report
----------------------------	----------	--------

Ford		De	sign Veri	ficatio	n Plan	and Re	eport					page 2 of 20		
System: CPSC 18.01	.07 Connect	tors	Ford part numl 8V5T-14421-A	ber (s): FA				Model Year a	and Program:		Ford Design Engineer:			
Temperature Class	Т3	T1, T2, T3, T4 T5	Supplier: TE C	onnectivity							Dec 11, 2020 Ford Design Engineer Approval			
Vibration Class	V2	V1, V2,V3, V4, V5		Capacity Tool		Part	t Level:	/el: PV - production		Plan: Report:				
Sealing Class	S1	S1. S2.S2.5. S3	Reason for V	alidation:					<u>, , , , , , , , , , , , , , , , , , , </u>		1			
Test Name/So	ource	Acceptance (Criteria Test Results			ts	Design Level	Sampl	le Size	Ti	ming			
							Testeu	Required	Tested	Sched.	Actual	Remarks		
Group A -Mechanica Mechanical Test SAE/USCAR-2 Terminal to Term Engage / Disenga	ninal age 5.2.1	Chart Terminal to Te	SAE/USC	e / Disenga AR-2 ion 5.1.8	age 5.9.3		SAE// Termina Engage / D	USCAR-2 I to Terminal Disengage 5.2.	1	SAE/USCAR-2 Visual Inspection 5.1.8				
A-1. Visual Inspection - SAE/USCAR-2 5.1.8 To document the physical appearance of test samples. The connectors asse show , with the magnification, any deterioration, crack etc., that could a functionality or o appearance. Conn mechanism must fu		nblies must not aid of 10X evidence of s, deformities, iffect their istort their ector locking nction without g	ust not ⟨ ⇒ of ities, r Passed ir king thout			PV	10	10	December 2020	December 2020				
				Max	Min	Ave						Data from a current tool already qaulified for comparison:		
A-2. Engage Force USCAR 2, 5.2.1.3.3		1st mate engag USCAR-2, 5.2	ge force 2.1.3.4	3.07 N	2.60 N	2.88 N	PV	10	10	December 2020	December 2020	Fmax= 3.38 N Fmin=2.17 N Favg= 2.63 N		
A-3. Disengage Force 10th unm USCAR 2, 5.2.1.3.3 USC		10th unmate diser USCAR-2, 5.2	ngage force 2.1.3.6	1.92 N 1.22 N 1.52 N					December 2020	December 2020	Data from a current tool already qaulified for comparison: Fmax= 2.29 N Fmin=1.22 N Favg= 1.84 N			
A-4. Visual Inspection - SAE/USCAR-2 5.1.8 To document the physical appearance of test samples. The connec show deteriorati etc., th functio appearance mechanisi		The connectors assen show , with the a magnification, any deterioration, cracks etc., that could a functionality or di appearance. Conne mechanism must fur breaking	nblies must not aid of 10X evidence of a, deformities, iffect their istort their ector locking nction without g	Passed PV			PV	10	10	December 2020	December 2020			

Ford)	De	esign Veri	fication Pla	n and Re	eport					page 3 of 20		
System: CPSC 18.01	1.07 Connect	tors	Ford part num 8V5T-14421-A	ber (s): FA			Model Year a	and Program:		Ford Design Engineer:			
Temperature Class	ТЗ	T1. T2. T3. T4 T5	Supplier: TE C	onnectivity						Ford Design Engineer Approval			
Vibration Class	V2	V1. V2.V3. V4. V5		Cap	pacity Tool	Par	t Level:	PV - product	ion	Plan: Report:			
Sealing Class	S1	S1, S2,S2.5, S3	Reason for V	alidation:				<u> </u>					
Test Name/Source		Accentance	Critoria			Design	Sampl	e Size	Tin	ning			
		Acceptance Cinteria		Tester			Required	Tested	Sched.	Actual	Remarks		
Group B -Mechanic	al Test Flow	Chart Terminal Benc	l Resistance 5.	9.3					I				
Mechanical Test SAE/USCAR-2 Terminal Bend R 5.2.2	t Resistance		SAE/USC Visual Inspect	AR-2 ion 5.1.8	→ Term	SAE/USCA inal Bend R 5.2.2	R-2 esistance		SDS EL-0001 5D Robustness to Test Probe	SA Visual	E/USCAR-2 Inspection 5.1.8		
B-1. Visual Inspection - SAE/USCAR-2 5.1.8 To document the physical appearance of test samples.		The connectors assemblies must nor show , with the aid of 10X magnification, any evidence of deterioration, cracks, deformities, etc., that could affect their functionality or distort their appearance. Connector locking mechanism must function without breaking		t Pass		PV	15	15	December 2020	December 2020			
B-2) Terminal Bend F USCAR-2, 5.2.2	Resistance	3 sets of 5 terminals and subjected to be Table 5.2.2.4 USCAR-2, 5	to be fixtured and forces in as per .2.2.3	10X magnification with no metal cracking of tearing Pass					December 2020	December 2020			
		5 terminals post b position (fig 5.2.2 straightened USCAR-2, 5	end at zero .3.2) to be d per .2.2.3	10X magnification with no metal cracking of tearing Pass		DV	15	15	December 2020	December 2020			
B-3a) Terminal A and Resistance USCAR-2, 5.2.2	d B Bend	5 terminals post ben zero position (fig 5.2 straightened USCAR-2, 5	d at 90° from 2.2.3.2) to be d per .2.2.3	10X magnification cracking of Pass	with no metal tearing		15	15	December 2020	December 2020			
		5 terminals post benc zero position (fig 5.2 straightened USCAR-2, 5	d at 180° from 2.2.3.2) to be d per .2.2.3	n 10X magnification with no metal cracking of tearing Pass					December 2020	December 2020			
B-4. Visual Inspection SAE/USCAR-2 5.1.8 document the physic appearance of test sa	on - 3 To cal samples.	The connectors assen show , with the a magnification, any deterioration, cracks	nblies must not aid of 10X evidence of s, deformities,	Pass	5	PV	15	15	December 2020	December 2020			

Ford		De	sign Veri	ficatio	n Plan	and Re	eport					page 4 of 20	
System: CPSC 18.0	01.07 Conne	ctors	Ford part numb 8V5T-14421-Al	er (s): FA				Model Year a	and Program:		Ford Design Engineer:		
Temperature Class	5 ТЗ	T1, T2, T3, T4 T5	Supplier: TE Co	onnectivity	,						Ford D	esign Engineer Approval	
Vibration Class	V2	V1, V2,V3, V4, V5	Reason for V	Capacity Tool Part				t Level:	PV - producti	on	Plan: Report:		
Sealing Class	S1	S1, S2,S2.5, S3						-					
Test Name/	Source	Accentance	Criteria Test Results			Design	Sampl	e Size	Tir	ning			
				Tested			Required	Tested	Sched.	Actual	Remarks		
Group D -Mechani	ical Test Flo	w Chart Terminal to Co	onnector Insert	ion/Extrac	tion 5.9.5			1				l	
Mechanical Tes SAE/USCAR-2 Terminal to Cor Insertion/Extrac	st nnector ction 5.4.1	Visu	SAE/USCAR-2 al Inspection 5.1	.8			SA Termin Insertion SAE/ Moisture 5.	E/USCAR-2 hal to Connecto / Extraction 5. /USCAR-2 e Conditioning 4.7.3.4	or 4.1	SAE/USCA Terminal to Co Insertion / Extrac	NR-2 Innector Stion 5.4.1	SAE/USCAR-2 Visual Inspection 5.1.8	
D-1. Visual Inspecti SAE/USCAR-2 5.1. document the physi appearance of test	ion - .8 To ical samples.	The connectors asser show , with the a magnification, any deterioration, cracks etc., that could a functionality or d appearance. Conne mechanism must fur breaking	emblies must not e aid of 10X y evidence of ks, deformities, affect their Pass distort their nector locking unction without ng				PV	Determined thru Table 5.4.1.3.1	10	December 2020	December 2020		
		Maximum Insertior terminal is 15N, 20N on terminal size (se	Force for a or30 N based ee 5.4.1.4.1)	Max	Min	Ave							
		Largest W	/ire	2.45 N	1.54 N	2.02 N							
D-2. Insertion Force	e	Smallest V	Vire	4.80 N	1.33 N	2.19 N				December 2020	December 2020		
USCAR 2, 3.4.1.3 F	A	The forward stop push must be 35N or gre terminals and 50 N terminals larger than width	n-through force ater for 0.50 or greater for 0.50 mm blade	Мах	Min	Δνο							
		Largest W	/ire	>51 N	>51 N	>51 N	PV	10					
D-3a. Extraction Fo With Primary Lock	orce -	Acceptance Criter USCAR Table 5.4.	ia found in 2 1.4	Max	Min	Ave				December 2020	'December 2020		
SAE/USCAR-2, 5.4	I.1.3 B	.3 B Largest W	/ire	50.85 N	43.29 N	46.22 N							
Revised	d February 17	7. 2020										FAP03-149	

ebruary 17, 2020

Ford		De	sign Veri	ficatio	n Plan	and Re	eport					page 5 of 20		
System: CPSC 18.01	.07 Connec	otors	Ford part num 8V5T-14421-A	ber (s): .FA				Model Year	and Program:		Ford Design Engineer:			
Temperature Class	Т3	T1, T2, T3, T4 T5	Supplier: TE C	onnectivity	,						Ford Design Engineer Approval			
Vibration Class	V2	V1, V2,V3, V4, V5			lidation:			t Level:	PV - product	ion	Plan:	Report:		
Sealing Class	S1	S1, S2,S2.5, S3	Reason for v	alidation:										
Test Name/So	ource	Acceptance (nce Criteria Test Results			Design	Samp	le Size	Tir	ning				
							Tested	Required	Tested	Sched.	Actual	Remarks		
D-3.c Extraction Force - With Primary and Secondary Locks - After Moisture SAE/USCAR-2, 5.4.1.3 B		Acceptance Criter USCAR Table 5.4.	ria found in 2 1.4	Max	Min	Ave				December 2020	December 2020			
		Largest Wire 110.28 N		110.28 N	91.58 N	100.12 N			10					
D-4. Visual Inspection - SAE/USCAR-2 5.1.8 To document the physical appearance of test samples.		The connectors assen show , with the a magnification, any deterioration, cracks etc., that could a functionality or di appearance. Conne mechanism must fur breaking	nblies must not aid of 10X evidence of a, deformities, ffect their istort their ector locking nction without	t Pass/ Fail		PV	10	10	December 2020	December 2020				
						Test	Part	Inven	tory P	age				
			Male	Conr	nector	Test			Female Connector Test					
Terminal Tes Number	Terminal Test Part Numbers									6W8T-14474-WA, T	Έ Ρ/Ν: 1670144-1, MCC	ON 1.2 CB REC SRC SN		
Seal Test I Number	Part rs			N	/A				N/A					
Clip/Cover et Part Numb	c. Test bers			N	/A						N/A			
Mating Devic PartะNumt	e Used	7, 2020	N/A							N/A EAD03-140				

Fired)	De	esign Veri	ificatio	n Plan and R	eport				
System: CPSC 18.01	1.07 Connect	ors	Ford part num 8V5T-14421-A	ber (s): \FA			Model Year	and Program:		Ford Design Engineer:
Temperature Class	ТЗ	T1. T2. T3. T4 T5	Supplier: TE C	Connectivity	,					Foi
Vibration Class	V2	V1, V2,V3, V4, V5		/ - 1' - 1 - 4'	Capacity Tool	Par	t Level:	PV - product	ion	Plan:
Sealing Class	S1	S1, S2,S2.5, S3	- Reason for \	/alidation:						
						Design	Samp	le Size	Tin	ning
lest Name/S	ource	Acceptance	Criteria		lest Results	Tested	Required	Tested	Sched.	Actual
Terminal Te Numbe	st Part rs			N	/A					N/A
Connector To Numbe	est Part rs			N	/A				TE P/N: 2203701-1 Ford PN 6S6T-14A459-I	, 2POS, MCON 1.2 (HKA, TE P/N: 17034
Wire Gauge a	ind Type			N	/A				0.5 mm2 X	LPE, 0.75 mm2 FLR

	page 6 of 20					
ord D	esign Engineer Approval					
	Report:					
	Remarks					
	TAB 2p TL UNSEALED					
TI-1, TUPUS, MIXED, PIN HSG						
2X, 20 AWG TXL						

	Ford SDS & USCAR-12 Check List			
	4.1 TERMINALS			
#	Requirement	Criteria	Meets Y/N	Comments
Т1	Design the male terminal per USCAR standards	Confirm male blade designs are per EWCAP- 001 (reference section item number 5).	N/A	
Т2	Design female terminals to avoid snagging (or assembler's hand damage) at harness assembly plants	a) Confirm no sharp projections on terminals. b) Confirm no protruding features. (Protected tangs, rounded shark fins, etc. are acceptable.)		
Т3	Design the female terminal to protect the electrical contact using closed-box technology.	Confirm full-metal closed box design		
Т4	Design for robust terminal retention: a) plastic lock fingers (preferred), or b) protected tangs	Confirm use of robust plastic lock finger or protected tang. Check for OEM-specific requirements (tang may not be allowed).		
Т5	copper alloys. Disclose terminal materials including temper on drawings supplied to end users for crimp analysis. Plating must be compatible with mating device platings per EWCAP	 a) Confirm plating is compatible with EWCAP- 001 drawing. b) Confirm thickness, method of plating, type of material are disclosed and documented on the part drawing. 	N/A	
Т6	Silver-plated terminals must have anti- tarnish protection.	a) Confirm anti-tarnish material is utilized (ref. EWCAP-001 drawing). b) Confirm sulfur-free interleave paper is used for terminals and low sulfur packaging is specified. c) Drawing to specify, "Black and gray tarnish on the silver surface is not recommended but may be accepted by the customer."		
	When a terminal is designed and released the supplier must provide necessary information needed to process or use the terminal. This information must be disclosed and readily available to the harness supplier	Confirm drawing or handling manual shows applicable information for terminals:		
Т7	Stabilih Datum Angle 2 Masure Angle 1 Angle 1 Datum Angle 2 Masure Angle 2 Angle 1 Datum Angle 2 Masure Angle 1 Angle 1	a) Chart wire range and insulation diameter range b) USCAR-21 compliant crimp dimensions for all tested crimps applicable types and sizes either on the drawing or as a separate document.		
	<image/> <caption></caption>	 c) Additional Dimensional Information: Datum for measurement of crimp location and orientation as shown in Figure 1 and 2 Crimp Offset if applicable (not shown) Parallel or Angularity Tolerance (not shown) If the design assumes coaxial features note it in the specification. 		
Т8	Any outside surface or blade-contacting surface must be free of burrs.	Confirm that the tooling simulation predicts no burrs.		
		obvious.		

Т9	Design the terminal to prevent mis- orientation into the connector housing. (Note: not all terminals require a polarization feature.) For designs that require polarization, design the terminal with an external terminal orientation feature which is visually obvious.	 b) Confirm an incorrectly oriented terminal inserted into the connector housing will have at least the terminal insulation grip fully protruding from the rear of the connector housing when fully pushed against orientation feature. c) If a mat seal with a rear cap is used, the terminal insulation grip must be visible if orientation feature has stopped a terminal. 		
т10	Terminal winding must be left-to-right payout. With crimp wings oriented up. Having a "USCAR Standard" allows for standard set-ups in wire harness operations. (Refer to Figure 1)	<image/>		
RQT 181017 008641 EL-0001 5F	Materials and Plating Requirements: (Formerly EL-0072) a) Copper alloys must be used. Alloys containing greater than 14% zinc shall not be used outside of the passenger compartment (except for soldered ring/eyelet applications). b) Terminal plating is required with the top coat being primarily tin, silver, or gold. It is expected that terminal makers will use plating specifications specifically engineered and optimized for their terminal. This is acceptable provided all performance testing passes. Ford plating spec. ES-DU5T-14A229- A* is available but is used for header terminal standardization and is not intended for loose- piece terminals. c) Electrical current and voltage levels of the application do not mandate one material over any other (including base alloy, undercoat plating, top coat plating, and lubricant), just so long as the performance requirements are met. (This means that there are no special requirements for dry circuits.) d) Additional application-specific tests for platings at high temperature: Tin top coats (and derivatives of tin), are generally acceptable up to 125C. Silver and hard gold top coats are generally acceptable up to 150C. Additional application-specific tests will typically be requested by releasing engineer if tin plating is requested for greater than 125C applications to confirm suitability.	a) Material Conductivity Verification Design Review b) Plating Design Review c) No criteris necessary d) No criteria necessary		
4.	2 SECONDARY TERMINAL LOCKS		M	
#	Requirement All connector designs must include a	Criteria	Meets Y/N	
STL1	secondary terminal lock. Known methods are: TPA, ISL, PLR	A secondary lock must be used and must meet this criteria: Confirm the design includes a TPA PLR or ISL		

r	τ	Accura cocondem (lock is present.) (stift, design is		
		Assure secondary lock is present. Verify design is mature carry-over or complete FEA or prototype test.		
STI 2	Secondary lock must be effective in meeting			
0.22	corresponding pull test values.	Note: OEMs often have additional requirements for this category and design engineers are advised to recheck		
		their statement of work.)		
	Make the secondary lock a contrasting color to	Confirm contracting color		
5115	designs.			
	4.3 CONNECTORS		Masta M/N	
#	Requirement	Criteria	Meets Y/N	
C1	All connectors with clip mounting provisions must use designs per EWCAP-005	Check all mounting features and confirm the correctly- sized EWCAP-005 design is used and identified as EWCAP-005 on the drawing.		
	Provide for multiple polarizations as requested with an ability to expand to four. (Intent of keys is to assure design cannot allow mis-mating and is not to be used as an assembly aid to confirm wire harness level.)	a) Confirm color is per the table and design polarizations are visually distinguishable.		
	b) Design polarizations to be visually distinguishable	 b) Confirm space for 4 polarization options that are effective and meet the criteria as defined in USCAR-2. CAD studies and or SLA models shall be reviewed to insure compliance. 		
	c) Polarizations and colors are to match these			
C2	colors. KEY UNSEALED SEALED			
	A Black Black			
	B Lt. Gray Lt. Gray C Dk. Gray Dk. Gray			
	D Black Black			
	Note: due to the high need for deviations from this color chart. USCAR recommends that the			
	OEM's Release Engineer approve variances.			
	Reserved Colors:			
	* Orange = High Voltage			
	* Light Blue = Intermediate Voltage			
	shroud length to provide housing alignment of			
	the mating connectors before terminal engagement. (This assures terminal			
	alignment.) (Refer to Figure 2)			
	Connector	A combination of CAD studies and SLA models must be		
C3	halves aligned	reviewed to document housing alignment. Verify CAD		
	prior to	Reconcile math model and documented rev levels.		
	engagement			
	Figure 2			
	Terminal Scoop Avoidance: Design the	A combination of CAD studies and SLA models must be		
	mm, recommended) to the male terminals	reviewed to document scoop proofing. Verify CAD data		
	during worst case mis-insertion angle to	Reconcile math model and documented rev levels.		
C4				
		For thin wall 050 and 064 headers perform a dynamic scoop study using Finite Element Analysis to determine		
		force to deflect walls and defeat anti scoop features.		
		case scenario for misalignment of the connector pair.		
	⊢igure 3: Scoop-prooting criteria			
1		Confirm the computed mating force does not exceed 90% of the USCAR-25 limit. (Compute the insertion		
C E	Calculated connector mating effort must	effort of the connection system (fully populated with all		
60	with a 10% design margin.	data from the terminal supplier. Include consideration for		
1		array factor, seal drag, lock engagement and other factors in the calculations		
 	Push surface areas must comply with	Confirm push surface areas comply to USCAR-25		
C6	SAE/USCAR-25 Section 4.2 for "CONTACT SURFACE CHARACTERISTICS."	section 4.2 by meeting the minimum area requirements of Table 4.1		

C7	All exposed connector edges must contain radii per USCAR-25 requirements.	Confirm compliance with USCAR-25.	
C8	Mating connector method shall not require a twisting motion on the part of the operator.	Confirm assembly method does not require a twisting motion on the part of the operator.	
	Design the connector to protect the terminals from damage and misalignment.	Using CAD simulation, a sphere must be virtually placed in all locations of the blade field and must comply per the table below:	
	Male connectors must have features molded into the connector housing or TPA that act as an obstacle to finger/object contact. The requirement Pass/Fail criteria is based on terminal size (larger terminals have higher bend strengths and are more tolerant of finger contact.)	a) For male blade size <1.5mm: a ball of 12.5mm diameter must not contact the terminal blades.	
		If a terminal alignment stabilizer plate is utilized the 12.5 mm diameter sphere requirement is waived.	
С9		b) For male blade size between 1.5mm and 2.8mm, a ball of 18 mm diameter must not contact the terminal blades	
		c) For male blade size > 2.8 mm: a ball of 24mm diameter must not contact the terminal blades.	
		d) Blade fields with mixed blade widths (hybrid) can use the criteria for the larger (wider) blade when the wider blade is also taller. Neighboring small terminals can be considered as part of the larger field when the distance from the bigger terminal is smaller than the height difference between terminals.	
		Note: Male connector designs with a long protective shroud (shroud depth > than connector width) should be evaluated by an expert to assess whether special (more tolerant) criteria are possible due to the protection from the shroud.	
C10	Bolt assist connectors shall not be designed.	Confirm no bolt connection	
C11	Design the functional features of the connector to meet USCAR 2 Section 5.4 Mechanical Requirements. Consider all performance requirements and normal packaging, shipping, and handling of the product including apag	a) Perform a CAD study to make sure a 1.5 mm diameter cylindrical shape is not able to get trapped or work its way in between geometry present on the connector to avoid snagging in a wire harness application.	
	avoidance.	b) Confirm that the assemblies meet the applicable mechanical acceptance criteria USCAR-2 section 5.4	
C12	Design connector half with terminals and other mating components so that there is no Buzz, Squeak, or Rattle in the mated condition.	Complete a design review of the connection system components. Specifically tolerance stack ups related to fit and function of TPA's, CPA's clip slots, Delete and Back Caps. Use crush ribs to engineer line to line fits & absorb tolerance to increase system immunity to BSR.	
	Sealing surfaces on the connector housings must be free of surface imperfections. (is the surface located under the peripheral seal). (Refer to Figure 4)	Apply a note on the part drawing that states "entire surface no mold parting lines, steel split lines, and part decorations allowed on these surfaces". "This area of tool to be Ra 0.4µm Max".	

C13	Seal area on male and female connector bodies must be free of graphics and surface imperfections.	multiple seal glands. Peripheral seal design is preferred. Surface finish requirements described above also apply to areas of the housing that provide nests for cable and matte seals.		
C14	mm of plastic coverage between the back end of the terminal and the back end of the connector. (Refer to Figure 5)	Complete tolerance analysis considering worst case tolerances of connector components to avoid electrical shorting of terminals.		

	Figure F		
C15 C16	Figure 5 Design all connectors with lead-ins on all mating surfaces. (Refer to Figure 6) Lead in chamfers present to avoid stubbing Image: stability of the stability o	A chamfer is allowed as long as it doesn't defeat keyways (polarization). Insure chamfer or radius is present to aid in seal installation.	
C17	feature. The stop feature needs to be part of the initial connector housing, not in the front loaded TPA/PLR. (Refer to figure 7)	Confirm design is compliant and utilizes a forward stop in the connector housing.	
C18	Provide access for the harness fixture continuity probe in the connector housing assembly. Provide access for the probe through the front of the connector so that top of spring member cannot be contacted. If this is not achievable probing the throat of the terminal is acceptable provided the terminal retains its design intended performance.	Confirm the connector and probe is designed so that contact is not made with the terminal mating surface. As an example, see spring probe designs as shown on drawing EWCAP-002.	
	Provide at least 0.25mm over travel of terminal which leaves clearance between the terminal lock surface and the cooperating terminal cavity locking finger retention surface. This is measured with the terminal against its forward stop and with the locking finger swung to a position where its retention surface most closely approaches the terminal lock surface. (Refer to Figure 8)	Confirm with CAD and swing studies and tolerance stack ups. Verify CAD data used for the studies is at the correct release level. Reconcile math model and documented rev levels.	
C19	POSITION 1 TERMINAL ENGAC POSITION 3 TERMINAL CREST LOCK FINGER	FIGURE 8	
C20	Design in an internal wall or stop, to prevent overstress of the terminal lock finger.	Ensure that the terminal lock finger design does not reach its elastic limit when stressed to maximum open position. Review engineering studies.	
C21	Certify that any used combination of regrind and raw material meets the plastic manufacturer's specification. Insure selected material or its content is not restricted or prohibited for use by government agency	Certify that the "as molded" parts are not degraded beyond acceptable material limits. DFMEA to include material processing parameters as cause for failure mode this failure mode needs to be transferred to the PFMEA and the manufacturers control plan.	
C22	Housing color Yellow is reserved for air bag and restraint systems. Housing color Orange is reserved for high voltage systems (60V to 1,000V) (see SAE/USCAR-37).	Industry requirements.	
C23	If requested to reduce carbon "tracking" between male blades on a header, use the	Design anti-tracking features per USCAR drawing	

During the initial design of each new connector and terminal family, complete a layout study of the mated assembly showing minimum/maximum terminal insertion, seal compression tolerance stack-ups, and worst case connector-to-connector alignment at the point of initial terminal contact. (Refer to Figure 9) This guideline ensures that connector lock over-travel and 1mm minimum contact engagement. The supplier retains this information and makes it available to the OEM or tier supplier upon request. Review CAD studies Verify CAD data used for the studies is at the correct release level. C24 Imagement. The supplier retains this information and makes it available to the OEM or tier supplier upon request. Review CAD studies Verify CAD data used for the studies is at the correct release level. C24 Imagement. The supplier retains this information and makes it available to the OEM or tier supplier upon request. Review CAD studies Verify CAD data used for the studies is at the correct release level. C24 Imagement. The supplier retains this information and makes it available to the OEM or tier supplier upon request. Review CAD studies Verify CAD data used for the studies is at the correct release level. C24 Imagement. The supplication of the studies of the studies is at the correct release level. C25 Requirement removed not applicable Requirement removed not applicable C26 Make cavity numbering consistent with industry standards Assure cavities are numbered consistently with header drawing and when the choice is available, per EWCAP rules in Appendix Section 5.1 C27 Make terminal spacing (pitch) per the recommen	1
Contact socket Contact pin Contact socket Contact pin Contact socket Contact pin Contact socket Contact engagement length Figure 4 Contact engagement length of a pin-socket par Figure 5 Figure 5 C26 Make cavity numbering consistent with industry standards Assure cavities are numbered consistently with header drawing and when the choice is available, per EWCAP rules in Appendix Section 5.1 C27 Make terminal spacing (pitch) per the recommendations of Section 5.3 Confirm compliance to Section 5.3. C27 Make trans a dual-lock that is difficult to engage. (Refer to Figure 10) for example of dual lock. Confirm a single lock is designed. (Interface drawings can note that older designs will have them.)	
Figure 5 C25 Requirement removed not applicable Requirement removed not applicable C26 Make cavity numbering consistent with industry standards Assure cavities are numbered consistently with header drawing and when the choice is available, per EWCAP rules in Appendix Section 5.1 C27 Make terminal spacing (pitch) per the recommendations of Section 5.3 Confirm compliance to Section 5.3. Carter of the recommendations of Section 5.3 Confirm a single lock is designed. (Interface drawings can note that older designs will have them.)	
C25 Requirement removed not applicable Requirement removed not applicable C26 Make cavity numbering consistent with industry standards Assure cavities are numbered consistently with header drawing and when the choice is available, per EWCAP C27 Make terminal spacing (pitch) per the recommendations of Section 5.3 Confirm compliance to Section 5.3. C28 Has a single lock rather than a dual-lock that is difficult to engage. (Refer to Figure 10) for example of dual lock. Confirm a single lock is designed. (Interface drawings can note that older designs will have them.)	
C26 Make cavity numbering consistent with industry standards Assure cavities are numbered consistently with neader drawing and when the choice is available, per EWCAP rules in Appendix Section 5.1 C27 Make terminal spacing (pitch) per the recommendations of Section 5.3 Confirm compliance to Section 5.3. Has a single lock rather than a dual-lock that is difficult to engage. (Refer to Figure 10) for example of dual lock. Confirm a single lock is designed. (Interface drawings can note that older designs will have them.)	
C27 Make terminal spacing (pitch) per the recommendations of Section 5.3 Confirm compliance to Section 5.3. Has a single lock rather than a dual-lock that is difficult to engage. (Refer to Figure 10) for example of dual lock. Confirm a single lock is designed. (Interface drawings can note that older designs will have them.)	
Has a single lock rather than a dual-lock that is difficult to engage. (Refer to Figure 10) for example of dual lock.	
SECOND LOCK UP FEATURE NOT TO BE INCLUDED ON NEWLY TOOLED, HEADERS, BUT THIS FEATURE MAY	
Figure 10	<u>+</u>
guideline may be useful: the maximum insertion force during a "spike" (non-linear increase in force) is typically less than 75% of the maximum mating force on a well- designed connector.	
RQT An engineering review of the connector-to- connector force vs. deflection curve must be reviewed and approved by releasing engineer. EL-0001 Data must demonstrate that the connector will ot exhibit a false indication of lock-up.	
RQT RQT RQT maintain design requirements.	

	Pp Not a valid PPP design Improper blade length Lowered floor measured fromhere Must allow clearance for test probe (Minimum width equal to terminal pitch) Figu	Measure from here		
RQT 181017 008641 EL-0001 5U	Terminal cavity design must follow Ford released cavity detail as defined on the Preferred Terminal List @ www.connectors.ford.com The connector cavity plastic shall extend 1mm past the terminal cutoff material.	Validation is per design review.		
#	Requirement	Criteria	Meets Y/N	
CL1	Design the locking feature with anti-snag and lock release protection to prevent inadvertent unlocking or permanent deformation during storage and shipping or during assembly in the vehicle. (Refer to Figure 11) Integral bridge on connector body protects latch from damage	Analyze the design to insure latch is adequately protected with side rails or a bridge or other features that protect latch.		
CL2	Ensure that the connector external latch feature is robust.	Confirm with FEA or traditional calculations that latch does not reach its plastic limit when stressed to the maximum deflection		
CL3	Design the locking feature to provide full engagement with face of shark fin and includes a lock back angle. (Refer to Figure 12) Design Latch for full engagement Figure 12	Review CAD studies and tolerance analysis to insure full engagement or utilize predictive tools. Verify CAD data used for the studies is at the correct release level. Reconcile math model and documented rev levels. Minimum Shark Fin to Lock back angle is -5 degrees. This insures a true lock up condition between the mated pair.		
CL4	Design the flexible lock member to be on the	Confirm latch is not on the device		
CL5	Design connector locks with clearance for beam motion	Review CAD studies and tolerance stack-ups to insure connector to connector plastic locks with a minimum of 0.25mm over travel and a maximum of 0.80mm following full engagement.		
CL6	When designing for mechanical assist (lever or slide), connectors are to have no electrical continuity when the connector is in the pre- mate position. Also, the mechanical assist shall not unlock until the connector has reached the pre-mate condition.	Review connector design studies to insure the pre-mate connector does not allow electrical continuity between connector halves. Review connector design studies to insure the lever is locked in the pre-mated position per USCAR-2		

CL7 CL8	When the connector is properly aligned for mating completion the mechanical assist lever shall release from the pre stage position providing a visual indication the connector is ready to seat. Color of Mechanical Assist is at OEM discretion	Verify through CAD studies and rapid prototypes the connector assist lever releases and moves 10 to 35 degrees. Connector supplier shall contact OEM to determine the requirement		
RQT 181017 008641 EL-0001 5A 5A-1 5A-2 5A-3	The connector lock beam must be protected from accidental deflection which could cause a permanent deformation during storage and shipping and unintentional unlocking after a connection is made. Confirm complete "lock beam protection" is present by checking for protective rails on both sides of the flexible lock beam.	Validation is per design review.		
RQT 181017 008641 EL-0001 5S	Connectors designated as "Inertia Locking" must meet these requirements. 1) Peak insertion force before terminal contact must be in compliance with USCAR-25 2) Peak force before terminal contact must be >5N above the peak force after terminal contact when fully populated as illustrated below. 3) Distance between the peak force before terminal contact and the peak force after terminal contact when fully populated must be <5mm as illustrated below. 4) Male terminal must have begun to enter cavity lead in at peak before terminal contact. 5) No electrical contact is permitted prior to inertia lock engagement.	Validation is per design review.		
	Peak from plastic interference before terminal contact t Dist. Between peak Travel dis	Peak after erminal contact GAP > 5 (N) s < 5mm tance (mm)		
4.5 C0	ONNECTOR POSITION ASSURANCE (CPA)			
#	Requirement Provide for CPA capability in the connector	Criteria	Meets Y/N	
CPA1	housing (or secondary latch for mechanical assist connectors.	system is a CPA-capable design.		
CPA2	preloaded on the connector housing.	Loose piece and tethered CPA's are not allowed.		
CPA3	connector housing. The color will be determined by the sourcing OEM.	Confirm contrasting color to the connector housing.		
CPA4	The CPA should provide audible and tactile feedback of proper closure in the final / seated position and shall not produce a sense of false locks or double clicks.	 Use test data from a part that meets the OEM specific performance criteria for audible feedback and carry over the design, or perform FEA analysis to predict the frequency range and sound pressure level of the new geometry when actuated and compare to test data. Use FEA to predict the force vs. travel curve of the CPA when actuated. A continuous increase in insertion effort as the CPA travels to lock followed by a distinct decrease in assembly effort combined with over travel past lock prior to reaching the CPA seated position with peak insertion effort and 0 travel. 		
CPA5	Design the CPA to be "active" so that it cannot be engaged until the connector is completely mated.	Verify through CAD studies the CPA design to insure the CPA cannot be engaged until the connector is completely mated per USCAR-2		

CPA6	The CPA <u>shall</u> provide readily identifiable visual indication that the CPA is Closed. Examples of visual indication include, but are not limited to, designing the push surface to be flush with the surrounding connector surface, designing the CPA Push surface to have a shoulder that rests on the surrounding connector surface.	Review the CPA Design in the seated position to insure the CPA position relative to adjacent connector geometry can be visually detected. CPA14 applies	
CPA7	The CPA shall be designed to prevent activation of the connector lock and disconnecting the connector halves when it is positioned in its final position. To avoid an accidental "bump and release" of the connector lock during vehicle assembly.	Review the CPA Design in the seated position to insure the CPA protects the connector lock from inadvertent release.	
	Make the minimum contact surface area at least 15 mm ² with a minimum dimension of 3mm, not including the edge radius. Any surface measuring less than 3mm in width or length cannot be considered as part of the contact surface area. Larger surfaces are preferred if possible. (Refer to figure 13)	Use CAD to verify available actuation area. Evaluate physical parts with rapid prototype. CPA14 applies	
CPA8	≥15mm ² → 15mm		
СРА9	Angled contact surface is acceptable. Contact surface areas should be optimally angled between 30° and 90° (perpendicular) from the direction of force insertion. (Refer to Figure 14). Angles greater than 90° negative slope are not allowed. Concave sperical and compound radii are also acceptable contact surface shapes. The actual area will be included in the calculation if the operator can contact the surface during actuation.	Use CAD to verify actuation angles. Evaluate function with rapid prototype parts. CPA14 applies	
	60 deg. 90 deg. Figure 14		
	Design the CPA with actuation force ≤25 N (USCAR-2 Misc. Component Insertion)	Measure the force on prototype parts or predict with FEA	
CPA10	Measure the force in the direction of CPA travel. (Refer to Figure 15)	Insertion 45 deg.	
CPA11	No sharp edges or hard contact points are allowed on the CPA push surfaces or along its actuation path an edge radius less than 0.8mm is unacceptable.	Evaluate CAD model to insure no hard contact points exist on the CPA actuation surface or along its actuation path. CPA14 applies	
	A fully seated <u>unobstructed</u> CPA push surface should be either flush or protruding above the surrounding surface of the connector. Flush includes a surface that is even with or recessed beyond the surrounding surface a maximum of 1mm. A minimum of 3X5 mm push surface must remain unobstructed by the connector body and wires through the length of travel.	Use CAD to verify seated position and required actuation clearance. Evaluate function with rapid prototype parts. CPA14 applies	
CPA12	If the CPA is <u>obstructed</u> , recessed or shrouded between opposing surfaces or sides, maintain 15mm minimum between opposing sides for CPA travel ≤ 7mm, 19mm minimum between sidewalls for travel > 7mm and for CPA's starting in a recessed and obstructed travel position, provide 19mm minimum between sidewalls. (Refer to Figure 16)	Figure 16 Examples of Obstructed CPA	
	Serrations, knurls, ridges etc. are permissible & if used must have a maximum height of 0.8 mm.	Evaluate CAD model to insure serrations, knurls and ridges meet the maximum height requirement.	

CPA13	(Refer to Figure 17)	CPA14 applies		
	Figure 17			
CPA 14	"This is an assembly ergonomics requirement that has been copied from USCAR-25. Since ergo requires specialized training, any change must be approved by the ergo experts who author the USCAR-25 spec."	Verify compliance with requirements. Refer to USCAR 25 for additional examples and detail.		
#	4.6 CONNECTOR SEALS Requirement	Criteria	×	
SE1	Make seal presence visually detectable	Confirm seal is a contrasting color to the connector		
SE2	Make a continuous surface (no tooling marks) in all seal areas (Peripheral, Individual Cable and Matte Seals)	Confirm mold parting lines, split lines, and part decorations are off of all sealing surfaces. Tool Steel Roughness to be Ra 0.4µm Max.		
SE3	Design for cable seal retention so that USCAR 21 criteria will be met. Include design feature for retention (example mushroom tops).	Design individual cable seals to have retaining feature to prevent it from moving along the wire and away from the terminal during assembly and handling.		
SE4	Design protective cover for unused (option delete) connectors with positive retention to the covered connector.	Maintain sealing capability as required and meet BSR performance.		
SE5	Design the connector, so that the mat seal is unaffected by wire bending and handling. Provide for positive retention of seal plugs if used. Other alternatives are end cap with integral hard plugs that are removed according to circuit loading. Flashed over cavities in the connector or mat seal.	Include a back cap with a wire strain relief feature. Allow for plugs to be inserted in individual terminal cavity openings in the cap after the end cap is installed.		
	Peripheral seals shall be designed as part of the female connector. The connector must have a shroud to completely protect the peripheral seal. Design must include a peripheral seal retention feature. (Refer to Figure 18)	Complete a Design Review of the connectors to insure		
SE6	Integral Hoop and Shroud Protect Seal	and a shroud to protect the peripheral seal from damage. Per USCAR-2		
	Design lead-in chamfer on connector housing to prevent "bunching" rollover or excessive movement of the peripheral seal during mating. (Refer to Figure 19)			
SE7	minimize seal rolling	Confirm with design review of CAD studies to insure the design meets the intended performance requirement.		
SE8	When using a multiple rib peripheral seal, design so that shroud length and size incorporates full utilization of all functional ribs in the worst-case dimensional stack-ups,	Complete Design Review of CAD study. Verify CAD data used for the studies is at the correct release level. Reconcile math model and documented rev levels.		
SE9	All sealing methods must be designed for two (2) terminal insertions and one (1) terminal extraction from the connector cavity without compromising the sealing properties.	Supports terminal design requirement having friendly edges and surfaces to avoid cutting seals. Confirm matches spec		
#	4.7 SERVICEABILITY Requirement	Criteria	Meets Y/N	
SV1	Design the terminal and connector system so that terminals and the connector can be removed without the use of "special tools".	(Nothing other than typical terminal picks).		
SV2	Design the connector locking feature so that it is ergonomically accessible and easily operated.	Opening the connector lock, shall not require the use of any tools unless specified by the design objective for a special application (i.e. high voltage connector).		
SV3	Avoid impeding of access to the connector lock by the location of any of the components attached to the connector housing, except the secondary lock (CPA).	(i.e. strain relief, locator, wire guides).		

SV4	Design wire routing guides (rear covers, or wire dress covers) to be capable of disassembly for service.	No functional damage to the connector housing.		
FO	RD SDS ADDITIONAL REQUIREMENTS			
#	Requirement	Criteria	Meets Y/N	
RQT 181017 008641 EL-0001 5L	Ford Corporate Branding Connectors must meet the Ford corporate branding directive E-108 and related ARL 19- 0108. "Branding" is adding a Ford logo to a component part to assure Ford parts are used correctly. Confirm compliance to one of two methods: Applies to supplier-funded: 1) Per page 3 of Directive E-108 by confirming a supplier mark (this applies to "non-safety related automotive industry-standard parts that are readily available for purchase in the marketplace as-is from competing sources, and are not branded for any vehicle manufacturer (e.g., tire valve stems, light bulbs, some fasteners). Note - No brand from a non-Ford OEM is allowed on connectors for Ford vehicles without approval from the branding office. Applies to Ford-funded parts 2) Branded per the directive with a Ford Logo. Note: Connector engineering received the interpretation that our connectors are "industry standard parts" unless Ford pays for the tooling and therefore do not require Ford branding. If a connector is tooled for Ford only with no chance of other companies sharing the tooling cost, then a Ford logo is needed. Connectors are released as a "Category III Core Part" and are to be reviewed for E-108 compliance by Core Engineering and not individual program teams.	Validation is per design review.		
RQT 181017 008641 EL-0001 5M	Restricted materials: Connectors and their related components must comply with the latest released level of the Ford "Restricted Substance Management Standard," WSS- M99P9999-A1. Validation method is per the WSS-M99P9999- A1 method. Supplier is responsible to track documentation. This data is tracked elsewhere and is not to be included in a DVP&R report.	Validation is per design review.		
RQT 181017 008641 EL-0001 5N	Restricted design features: 1) Dual locks and/or face seal connector. (Design is known to leak.) 2) Exposed interface seal or sealing surface on connector. (Known to be at-risk for damage or accidental removal.) 3) No brass female terminals (zinc >12%) allowed in temperatures greater than T2 (excluding eyelets). (Brass is known to weaken in hot conditions.) 4) "Open box" terminals where active spring is exposed. (Terminal designs that are not fully closed have high risk for terminal damage in assembly or service.) 5) No "Over molded" connectors. (Design has risk of not sealing and risk of uncontrollable dimensions.)	Validation is per design review.		

All con RQT rules ir 181017 Knowle 008641 can be EL-0001 https:// 5T under t Conne	onnectors must meet the connector design in E2KS Enterprise Engineering /ledge System. Connector design rules be found in E2KS at: ://web.e2ks.ford.com/e2ks/e2ks_home.jsp r the Community of Practice (CoP) 1801 ector and Terminals (1801_EL)	Validation is per design review.		
--	---	----------------------------------	--	--

Date 12/5/2018 3/8/2019 10/10/2019

1/28/2020

2/10/2020 2/10/2020 2/19/2020

6/10/2020

Revision Comments Added Insulation Resistance to sections U and S, as well as to Flow Charts U, S, and W Revised Group E to break out CPA forces into Mated and Unmated Criteria Added stand alone pressure vac to tool transfer connector

Added lines: -G-2d - Ford SDS EL-0001 5A, 5A1-A3 B-3c - Ford SDS EL-0001 5D W-6 and W-11; S-6, S-7, S-12 AND S-13; U-6, U-7, U-12 AND U-13 - Ford SDS EL-0001 5H

Added Test Sections - Due to Updated USCAR-2 Revision 7 Test sequence AF Special Test Self Rejecting Squib Pin Protection Plate Sealing S2.5 Heavy Splash (For existing S2 parts that cannot pass S3) Added Ford SDS & USCAR-12 Checklist Added E5 - Wire Strain Relief Capacity/Load Trans - Ford SDS EL-0001 5E

Revised Terminal insertion force in Sequence D-2 to show varied terminal insertion force by terminal size

ESER_DVPR_8V5T-14421-AFA_MCON_CB_BI ade_Capacity_Die_Tool#1949806

Final Audit Report

2020-12-11

Created:	2020-12-11
Ву:	Sumit Das (sumit.das@te.com)
Status:	Signed
Transaction ID:	CBJCHBCAABAAsLjm0EcNH7HxoHCYP38ZFguaAMjHi-dK

"ESER_DVPR_8V5T-14421-AFA_MCON_CB_Blade_Capacity_ Die_Tool#1949806" History

- Document created by Sumit Das (sumit.das@te.com) 2020-12-11 - 4:55:55 PM GMT- IP address: 198.137.214.33
- Document emailed to Joel Pittenger (jpitten1@ford.com) for signature 2020-12-11 - 4:56:55 PM GMT
- Email viewed by Joel Pittenger (jpitten1@ford.com) 2020-12-11 - 5:02:14 PM GMT- IP address: 136.2.33.167
- Document e-signed by Joel Pittenger (jpitten1@ford.com) Signature Date: 2020-12-11 - 5:04:56 PM GMT - Time Source: server- IP address: 136.2.33.167- Signature captured from device with phone number XXXXXX4467
- Agreement completed. 2020-12-11 - 5:04:56 PM GMT

PF90012 Design Validation Plan & Report Document

Supplier:	TE Connectivity
Supplier Part Number:	1718350-1
Part Description	MCON 1.2 CB STC BLADE
Lead Application:	
Lead Carline	
Lead MY:	
PF90012 Temperature Class	Т3
PF90012 Vibration Class	V2

Were There Failures on Testing?	No						
(If yes, please explain on Failure Analysis Page)							

Prepared By:	Andrew Hjelt
Date:	12/11/2020

Comments:

TE is requesting FCA approval of the Product Validation Plan for a new capacity die located in Greensboro, NC, USA to produce the MCON 1.2 CB SRC terminal 1718350-1.

Date:	Rev.	Content of Revision

										Page 2
DESIGN VERIFICATION PLAN AND REPORT Date:										12/11/2020
Asse	mbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Desig	n Engineer:	
Syste	em		Subsystem					DVI	P&R Level:	Prototype
Spec	ifications:		IN/A							✓ Production
USC.	AR2 Rev. 6 February 2013									
				Test R	esults			Tim	ing	
pe	Test Sub-Category	Acceptance Criteria					Minimum Required Data			Notes
st Ty				DV		PV	Points	Sched	Actual Start /	
Tee			Pass/Fail	Result	Pass/Fail	Result		Start / End	End	
		Term	inal - Termin	al Engage/Disengage	orce PF	90012 Sec. 6.4.1.A		I		
		1st and last (10th) insertions should be recorded.	TBD	TBD			10 Data Points			daulified for comparison:
										1
	Engage Force				Passed	Fmax = 3.07 N Fmin = 2.60 N				Fmax= 3.38 N
50	Sec. 6.4.1.A	Complete the Visual Examination per section 6.2.1 noting			T ussed	Favg = 2.88 N				Fmin=2.17 N Favg= 2.63 N
stin		any wear of the contact surfaces. No base material should be								
l Te		exposed.						Dec 2020	Dec 2020	
iical		10th removal should be recorded.	TBD	TBD			10 Data Points	Dec 2020	Dec 2020	
han										
Mec	Disengage Force					Fmax= 1.92 N				Fmax= 2.29 N
l la	Sec. 6.4.1.A				Passed	Fmin=1.22 N				Fmin=1.22 N Favg= 1.84 N
iim.						ravg = 1.52 N				
Ter										
			Termina	Bend Resistance 1	2 2F90012 Sec	. 6.4.1.B				
		The TUT must not tear when subjected to the applied force	TBD	TBD			15	Dec 2020	Dec 2020	
	Terminal Bend Resistance	for <u>15 seconds</u> . If the TUT was bent from its original			Deceed	No orocho or tooro	(Terminal Type			Applied Force = 4.0 N
	Sec. 6.4.1.B	straightened to its original position			Passed	NO CTACKS OF leafs	(A)			Applied Force = 4.0 N

										Page 3
DESIGN VERIFICATION PLAN AND REPORT Date:									12/11/2020	
Assen	bly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Design	1 Engineer:	
Syster N/A	System Subsystem DVP&R Level:							Prototype		
Specif USCA	ications: R2 Rev. 6 February 2013									✓ Production
				Test Re	sults			Tim	ing	
				itsi K	.50115		Minimum		ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Mecha	nical Over-Stress - PF	90012 Sec. 6	.4.1.C				
	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10 m Ω Max ≤ 1.5 mm 8 m Ω Max ≤ 2.8 mm 5 m Ω Max ≤ 6.35 mm 1.5 m Ω Max > 6.35mm 1.5 m Ω Max While shorted resistance shall be < 40 m Ω **10.0m Ω Max for precious metal contacts**	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
sting	Voltage Drop 6.3.6 B	$\begin{array}{l} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm 10 \mbox{ m}\Omega \mbox{ Max} \\ \leq 1.5mm 8 \mbox{ m}\Omega \mbox{ Max} \\ \leq 2.8mm 5 \mbox{ m}\Omega \mbox{ Max} \\ \leq 6.35mm 1.5 \mbox{ m}\Omega \mbox{ Max} \\ > 6.35mm 1.5 \mbox{ m}\Omega \mbox{ Max} \\ \mbox{ Maximum allowable mVD} = 50 \\ **10.0m\Omega \mbox{ Max for precious metal contacts}** \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

Page 4										Page 4
DESIGN VERIFICATION PLAN AND REPORT Date:										12/11/2020
Asser	nbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Design	Engineer:	
Syste N/A	m		Subsystem N/A					DVF	P&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									✓ Production
				Test R	lesults			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test '			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
cal To	Mechanical Over-Stress Sec. 6.4.1.C	Conditioning Step Only	TBD	TBD	TBD	TBD	N/A	TBD	TBD	
Terminal Mechanica	Dry Circuit Resistance 6.3.6 A	$ \begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10 \ m\Omega \ Max \\ \leq 1.5mm & 8 \ m\Omega \ Max \\ \leq 2.8mm & 5 \ m\Omega \ Max \\ \leq 6.35mm & 1.5 \ m\Omega \ Max \\ > 6.35mm & 1.5 \ m\Omega \ Max \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	$\begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10 \ m\Omega \ Max \\ \leq 1.5mm & 8 \ m\Omega \ Max \\ \leq 2.8mm & 5 \ m\Omega \ Max \\ \leq 6.35mm & 1.5 \ m\Omega \ Max \\ > 6.35mm & 1.5 \ m\Omega \ Max \\ Maximum \ allowable \ mVD = 50 \\ **10.0m\Omega \ Max \ for \ precious \ metal \ contacts ** \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
			Cri	mp Strength PF90	12 Sec. 6.4.1	I.D				
	Crimp Strength USCAR-21	Cable to terminal crimps shall be validated per SAE/USCAR-21. Refer to SAE/USCAR-21 for test procedure. Terminal crimps for all wire sizes specified for the terminal shall be completed.	TBD	TBD	TBD	TBD	All cable crimping configurations shall be verified	TBD	TBD	

										Page 5		
	DESIGN VERIFICATION PLAN AND REPORT Date:											
Asser	embly/Part Number: Component Description:											
	1718350-1	MCON 1.2 CB STC BLADE						Design	Engineer:			
Syste	m		Subsystem					DVP	&R Level:	Prototype		
Speci USCA	fications: AR2 Rev. 6 February 2013		IN/A							Production		
				Test Re	sults		N. 1	Timi	ing			
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data Sched		Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End			
		N	laximum Curi	rent/Current Cycling ·	PF90012	Sec. 6.3.6.D-E						
minal Electrical	Maximum Test Current Capability 6.3.6 D	No pass/fail criteria applies; value is used to establish "Maximum Test Current" for the TUT in Section 6.3.6 The maximum test current of the specific combination of the terminal and the wire conductor gage and insulation type used is the current that produces an exact or interpolated value of 55°C rise in the first increment in which either the condition described in 9 a or 9 b above was achieved, less 10% of that value.	TBD	TBD	TBD	TBD	10 Lg Data Points 10 Sm Data Points	TBD	TBD			
Termir	Current Cycling 6.3.6 E	 At the conclusion of the test, verify conformance of CUT/TUT per corresponding measurement section as identified in Test Sequence (6.3.6). The temperature of any terminal interface must not exceed a 55 oC ROA at any time during the test. 	TBD	TBD	TBD	TBD	30 Lg Data Points 30 Sm Data Points	TBD	TBD			

										Page 6	
DESIGN VERIFICATION PLAN AND REPORT Date:									12/11/2020		
Assembly/Part Number: Component Description:											
1718350-1 MCON 1.2 CB STC BLADE				Design Engineer:							
System N/A			Subsystem				DVP&R Level:			Prototype	
Speci	fications: A R 2 Rev. 6 February 2013		1.011								
	Test Sub-Category	Acceptance Criteria	Test Results				Minimum	Timing			
Test Type			DV		PV		Required Data	Sched	Actual	Notes	
			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End		
	Vibration/Mechanical Shock PF90012 6.4.2 K										
inal-Electrical Testing	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD		
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD		
	Dry Circuit Resistance 6.3.6 A	$\begin{array}{l} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \mbox{ Max} \\ \leq 1.50mm & 8.0m\Omega \mbox{ Max} \\ \leq 2.80mm & 5.0m\Omega \mbox{ Max} \\ \leq 6.35mm & 1.5m\Omega \mbox{ Max} \\ > 6.35mm & 1.5m\Omega \mbox{ Max} \\ \mbox{While shorted resistance shall be } < 20 \mbox{ m}\Omega \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD		
	Mechanical Shock 6.4.2 K	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD		
	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20	
	Dry Circuit Resistance 6.3.6 A	$\begin{array}{l} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ > 6.35mm & 1.5m\Omega \ Max \\ \ While shorted resistance shall be < 20 \ m\Omega \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD		

DESIGN VERIFICATION PLAN AND REPORT Date:								12/11/2020		
Assembly/Part Number: Component Description:										
1718350-1 MCON 1.2 CB STC BLADE								Desigr		
System N/A			Subsystem				DVP&R Level:			Prototype
Specif USCA	Specifications: USCAR2 Rev. 6 February 2013						✓ Production			
	Test Sub-Category		Test Results					Timing		
Test Type		Acceptance Criteria	DV		PV		Minimum Required Data	Sched	Actual	Notes
			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
Term	Vibration 6.4.2 L	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B		TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
										Page 8
--------------	--	---	-----------	--------------------	---------------	-----------	-----------------------	-------------	----------------	--------------------
		DESIGN V	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Desigi	n Engineer:	
Syste N/A	em		Subsystem					DV	P&R Level:	Prototype
Spec	ecifications: CAR2 Rev. 6 February 2013									✓ Production
USC.	CAR2 Rev. 6 February 2013									
				Test R	esults		N.:	Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test '			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Thermal	Shock PF90012 Sect	ion 5.2.1 (El	ectrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
sting	Dry Circuit Resistance 6.3.6 A	$\begin{array}{ll} Total \ connection \ resistance \ (crimp-to-crimp): \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ \geq 6.35mm & 1.5m\Omega \ Max \\ > 6.35mm & 1.5m\Omega \ Max \\ While \ shorted \ resistance \ shall \ be < 20 \ m\Omega \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
rical Tes	Thermal Shock 6.4.2 K	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
al-Electi	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20

										Page 9
		DESIGN V	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	nbly/Part Number:	Component Description:							F .	
	1718350-1	MCON 1.2 CB STC BLADE						Desigi	i Engineer:	
Syste N/A	m		Subsystem N/A					DVI	P&R Level:	Prototype
Speci USC.	fications: AR2 Rev. 6 February 2013									✓ Production
				Test R	esults		Minimum	Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Foints	Start / End	Start / End	
Termins	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): $\leq 0.64mm$ $10.0m\Omega$ Max $\leq 1.50mm$ $8.0m\Omega$ Max $\leq 2.80mm$ $5.0m\Omega$ Max $\leq 6.35mm$ $1.5m\Omega$ Max> $6.35mm$ $1.5m\Omega$ MaxWhile shorted resistance shall be < $20 m\Omega$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	$\begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \mbox{ Max} \\ \leq 1.50mm & 8.0m\Omega \mbox{ Max} \\ \leq 2.80mm & 5.0m\Omega \mbox{ Max} \\ \leq 6.35mm & 1.5m\Omega \mbox{ Max} \\ \geq 6.35mm & 1.5m\Omega \mbox{ Max} \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

										Page 10
		DESIGN V	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asser	nbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	n Engineer:	
Syste N/A	m		Subsystem N/A					DVI	P&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									Production
				Test	Results			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
		Tem	perature/Hum	idity Cycling PF9	0012 Section 5	.2.2 (Electrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
ß	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Testi	Temp/Humidity Cycling 5.2.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
ectrical	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
Terminal-El	Dry Circuit Resistance 6.3.6 A	$\begin{array}{l} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ \geq 6.35mm & 1.5m\Omega \ Max \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

										Page 11
		DESIGN	ERIFICA	FION PLAN	AND REP	ORT			Date:	12/11/2020
Assem	bly/Part Number:	Component Description:						Durin	E t.	
	1718350-1	MCON 1.2 CB STC BLADE						Desigi	n Engineer:	
Systen N/A	n		Subsystem N/A					DVI	P&R Level:	Prototype
Specifi USCA	ications: R2 Rev. 6 February 2013	5 February 2013								▼ Production
				Test	Results		Minimum	Tim	ning	
Type	Test Sub-Category	at Sub-Category Acceptance Criteria DV PV					Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Foints	Start / End	Start / End	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

										1 age 12
		DESIGN '	VERIFICA	FION PLAN	AND RE	PORT			Date:	12/11/2020
Asser	nbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Design	Engineer:	
Syste: N/A	m	·	Subsystem N/A					DVP	&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									✓ Production
				Test I	Results			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
		J	High Temperatur	e Exposure PF90)12 Section 5.2	2.3 (Electrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning	Conditioning Step Only	NT/A				10 Connector	TBD	TBD	
155555555555555555555555555555555555555	1.0.2	Conditioning Step Omy	N/A	N/A	N/A	N/A	Pairs			
esting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): $\leq 0.64mm$ $10.0m\Omega$ Max $\leq 1.50mm$ $8.0m\Omega$ Max $\leq 2.80mm$ $5.0m\Omega$ Max $\leq 6.35mm$ $1.5m\Omega$ Max $\geq 6.35mm$ $1.5m\Omega$ Max $\geq 6.35mm$ $1.5m\Omega$ Max While shorted resistance shall be $\leq 20 m\Omega$	TBD	N/A TBD	N/A TBD	TBD	Pairs 10 Data Points	TBD	TBD	

		DESIGN V	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Assen	nbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Desig	n Engineer:	
Syste	m		Subsystem					DVI	P&R Level:	Prototype
N/A Speci	fications:		N/A							Directuation
USCA	AR2 Rev. 6 February 2013									
				Test I	Results			Tim	ning	
ype	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test T			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
Terminal-Elect	Dry Circuit Resistance 6.3.6 A Voltage Drop 6.3.6 B Visual Examination 6.2.1	$\label{eq:constants} \begin{array}{l} \hline \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ \geq 6.35mm & 1.5m\Omega \ Max \\ \hline \mbox{While shorted resistance shall be } < 20 \ m\Omega \\ \hline \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ \hline \mbox{Somm} & 1.5m\Omega \ Max \\ \hline \mbox{Mile shorted resistance shall be } < 20 \ m\Omega \\ \hline \mbox{There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the \\ \hline \end{tabular}$	TBD TBD TBD	TBD TBD TBD	TBD TBD TBD	TBD TBD TBD	10 Data Points 10 Data Points 10 Data Points 10 Connector Pairs	TBD TBD TBD	TBD TBD TBD	
		tolerances specified on the part drawing.	Hear	vy Duty Test PF900	12 Section 5	2.4				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	6 Terminal Pairs	TBD	TBD	

										Page 14
		DESIGN	VERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Desig	n Engineer:	
Syste	m		Subsystem					DVI	P&R Level:	Prototype
Spec	ifications:		N/A							Production
USC	AR2 Rev. 6 February 2013									F Houdelion
				Test R	esults			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data Points	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Tomts	Start / End	Start / End	
sting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	
rical Te	Heavy Duty Test 5.2.4	Conditioning Step Only	N/A	N/A	N/A	N/A	6 Data Points	TBD	TBD	
Terminal-Elect	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): $\leq 0.64mm$ $10.0m\Omega$ Max $\leq 1.50mm$ $8.0m\Omega$ Max $\leq 2.80mm$ $5.0m\Omega$ Max $\leq 6.35mm$ $1.5m\Omega$ Max $\geq 6.35mm$ $1.5m\Omega$ Max $\geq 6.35mm$ $1.5m\Omega$ Max While shorted resistance shall be $\leq 20 m\Omega$	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	
	Temperature Rise at Max De- Rated Current (Per Cycle)	Maximum allowed T-Rise on the terminal at the end of each cycle is 50 deg C. Temperature on any terminal shall not exceed the terminal's max temperature rating at any time during the test	TBD	Cycle 1 = TBD Cycle 2 = TBD Cycle 3 = TBD Cycle 4 = TBD Cycle 5 = TBD	TBD	Cycle 1 = TBD Cycle 2 = TBD Cycle 3 = TBD Cycle 4 = TBD Cycle 5 = TBD	6 Data Points	TBD	TBD	

		DESIGN VI	ERIFICAT	FION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number:	Component Description:						Desta	T	
	1718350-1	MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syste	m		Subsystem					DVI	P&R Level:	Prototype
N/A Spec	ifications:		N/A							
USC	AR2 Rev. 6 February 2013									Production
		1		Test	t Results			Tin	ning	
				105			Minimum		<u>s</u>	
Lype	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
[est]			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start /	
		<u> </u>	ł						Ella	
		Term	ninal - Connect	or Insertion/Reten	tion Force PF9	0012.6.4.2 A-B				
		Insertion effort must be smooth with no stalling or false	TBD	TBD	Passed	Largest Wire Size:		Dec 2020	Dec 2020	
		lock-up. Maximum Insertion Force (by wire cross section):				Fmax= 2.45 N				
						Fmin=1.54 N				
		< 1 mm2: < 15N				Favg = 2.02 N				
		= 1 mm 2: < 20 N				Smalles Wire Size:	10 L g Data			
		> 1mm2: < 30N				Fmax = 4.80 N	Points			
						Fmin=1.33 N	10 Sm Data			
	Insertion Force					Favg= 2.19 N	Points			
	6.4.2.A	Forward stop must withstand a push-through force of: (By	TBD	TBD	Passed	>51 N	6 6			
al		Terminal Size)					See Sec. $642AB$			
nic		0.50mm: > 35N					Notes 1 & 2			
cha		> 0.50mm: > 50N				and the				
Me		Mating of a terminal with ISL fully seated shall not be	TBD	TBD	TBD	TBD				
1		A minimum load of at least twice the limits of maximum	TBD	TBD	TBD	TBD				
ecto		Insertion Force above is required for seated PLR's.								
onn		Terminal rotantion w/o secondom look:	TRD	TDD	Decod			Dec 2020	Dec 2020	
C C		Terminal Size:	IDD	IDD	Passed			Dec 2020	Dec 2020	
	Retention Force w/o Secondary	< 0.64: 30 N Min				Fmax= 50.85 N	10			
	Lock	\leq 1.2mm 40N Min				Fmin=43.29 N	10 Data Points			
	6.4.2.B	≤ 2.8mm 60N Min				Favg= 46.22 N	Each Test			
		\leq 6.3mm 80N Min								
		<u><</u> 9.5mm 100N Min								
		Post Moisture Conditioning	TBD	TBD	Passed			Dec 2020	Dec 2020	
	Retention Force w/ Secondary					Fmax= 110 28 N				NOTE 1: Includes connectors
	Lock	≤ 1.2 mm 70N Min				Fmin=91.58 N	10 Data Points			not designed for use with
	6.4.2.B	≤ 2.8 mm 100N Min				Favg= 100.12 N	Each Test			secondary lock.

			DESIGN V	ERIFICA	TION PLAN A	ND RE	PORT			Date:	12/11/2020
Assen	nbly/Part Number: 1718350-1	Component De MCON 1.2 CB	escription: STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syster N/A	m	_		Subsystem N/A					DV	P&R Level:	Prototype
Speci USCA	ifications: AR2 Rev. 6 February 2013									▼ Production	
					Test Re	esults			Tin	ning	
Type	Test Sub-Category		Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test		Pass/Fail Result Pass/Fail Result Result Found Start / End						Start / End			
	≤ 6.3mm 130N Min ≤9.5mm 150N Min										

		DESIGN VI	ERIFICA	TION PLAN A	AND RE	PORT			Date:	12/11/2020
Ass	mbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syst N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spe USC	zifications: ZAR2 Rev. 6 February 2013									✓ Production
	1			Test I	Results			Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Terminal/C	avity Polarization Te	st PF90012	2 6.4.2 C				
tor - Mechanical	Terminal/Cavity Polarization Test 6.4.2.C	Terminals inserted at a force 1.5 times the normal insertion force or 15N (whichever is greater) in any incorrect orientation shall not fit or lock into a connector cavity beyond the insulation wings (grips) or cable seal (see Figure 16). There shall be no visible damage to either the terminal or connector that would prevent subsequent correct insertion and function following any attempt at incorrect insertion per this procedure. The expert evaluation shall be completed and	TBD	TBD	TBD	TBD	10 LRG Data points per applicable orientation (minimum 4, see 6.4.2.C.A)	TBD	TBD	NOTE: Where wire buckling and operator sensitivity cause problems in obtaining test repeatability, terminals may be crimped to a gage pin, solid core wire, or other metal dowel material and used to obtain measurements. Samples prepared in this manner require additional connector samples.
nect		Connector to Connector	· Mating/Unm	nating Force (Non-me	chanical Assi	st Connectors) PF9	0012 6.4.2 D			
Con	Mating Force 6.4.2.D	Conn mating force shall adhere to USCAR-25: Small grip area < 22 N Medium grip area < 45 N Large grip area < 75 N.	TBD	TBD	TBD	TBD	15 Data Points	TBD	TBD	See Notes 1,2,3 in acceptance criteria
		Disengage force<75N with lock disabled, w/o CPA	TBD	TBD	TBD	TBD	10 Data Points			See Note in Acceptance Criteria regarding latches with difficult
	Unmating Force 6.4.2.D	Disengage force >110N with lock enabled, w/o CPA	TBD	TBD	TBD	TBD	w/o terminals 5 Data Points w/	TBD	TBD	service locations.
		Force to Service: $6N \le F \le 51N$ w/o CPA	TBD	TBD	TBD	TBD	Terminals			

		DESIGN VE	ERIFICA	TION PLAN A	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syste N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									✓ Production
				Test F	Results			Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	romts	Start / End	Start / End	
		Connector to Connector	r Mating/Unn	nating Force (Mechan	nically Assiste	ed Connectors) PF	90012 6.4.2 E			
		Conn. to pre-lock shall adhere to USCAR 25: Small grip area < 22 N Medium grip area < 45 N Laree grip area < 75 N	TBD	TBD	TBD	TBD		TBD	TBD	
	Pre-Lock Insertion/Removal 6.4.2 E Test A-B	The force required to unseat the connector from pre-lock position shall be ≥ 15 N and ≤ 75 N.	TBD	TBD	TBD	TBD	10 Data Points			
nical	I GI A'D	The force required to move the lever from its shipping position while the connector IS NOT in pre-stage position: Class 1 and 2 connectors: 60N Min Class 3 connectors: 90N Min	TBD	TBD	TBD	TBD				
ctor - Mechai	Lock Insertion/Removal Force 6.4.2 E	The force required to move the lever to and from the locked (engaged) position shall meet the requirements of USCAR- Class 1: 22N Max Class 2: 45N Max Class 3: 75N Max	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Conne	Test C	The minimum force required to release the assist feature without depressing the release mechanism (if applicable) shall be ≥ 60 N for a fully mated connector.	TBD	TBD	TBD	TBD	For Each Test			
	Connector Latch Retention Force	Un-mating force must be \geq 110N with the primary lock fully engaged. A CPA must NOT be engaged.	TBD	TBD	TBD	TBD	5 Data Points	- TBD	TBD	
	Test D	Un-mating force must be ≤ 75 N with the primary lock completely disengaged/disabled.	TBD	TBD	TBD	TBD	1 Data Point			
	Lever Release Latch Actuation Force 6.4.2 E Test E	The force to completely disengage the secondary connector lock, F, is $6N < F \le 51N$	TBD	TBD	TBD	TBD	5 Data Points	TBD	TBD	

		DESIGN VI	ERIFICA	TION PLAN A	ND RE	PORT			Date:	12/11/2020
Asse	embly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syst N/A	em		Subsystem N/A					DV	P&R Level:	Prototype
Spec USC	c ifications: CAR2 Rev. 6 February 2013									Production
	1			Test R	esults			Tin	ning	
ье	Trad Seile Cade and	Assessment Criteria					Minimum			Nadaa
est Ty	Test Sub-Category	Acceptance Criteria	Pass/Fail	DV Result	Pass/Fail	PV Result	Points	Sched Start / End	Actual Start /	INOLES
T			Polarizatio	n Feature Effectivened	s PF9001	2642F		Start / Enu	End	
	Polarization Feature Effectiveness	Minimum mis-mating force ≥ 150N or 3 times the normal mating force unless otherwise specified. No electrical contact can be made under an applied force of less than 150N	TBD	TBD	TBD	TBD	1 Data Points For Each Incorrect Orientation or Mix-Index	TBD	TBD	
nical	6.4.2.F	No physical damage is permissible to mating halves. Expert evaluation has been completed	TBD	TBD	TBD	TBD	l Data Points For Each Incorrect Orientation or Mix-Index	TBD	TBD	
char			So	coop-Proofing PF90	012 6.4.2 G					
onnector - Me	Scoop-Proofing 6.4.2 G	Based on the component manufacturer's drawings there shell be no deformation of male and female terminals, no internal damage to the female spring and no visible damage to either halve of the connector housings.	TBD	TBD	TBD	TBD	1 Populated Pair per Polarity	TBD	TBD	
C		Both connector housings must have sufficient plastic lead- in alignment features to prevent bent/damaged terminals.	TBD	TBD	TBD	TBD	N/A	TBD	TBD	
			Conne	ctor Seal Retention I	PF90012 6.4	.2 H				
		Force to remove perimeter seal from female connector shall be >10N.	TBD	TBD	TBD	TBD	5 Data Points			
	Connector Seal Retention 6.4.2 H	Seal shall remain on the connector and in its design intended position to ensure connector system will pass sealing requirements defined in this document.	TBD	TBD	TBD	TBD	1 Conditioned Mated Pair	TBD	TBD	

		DESIGN V	ERIFICA'	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desigr	n Engineer:	Andrew Hjelt
Syste N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec USC.	ifications: AR2 Rev. 6 February 2013									✓ Production
				Test	Results		Minimum	Tim	ung	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data Points	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	1 01110	Start / End	Start / End	
		Miscel	laneous Compo	onent Engage/Diseng	age Force	PF90012 6.4.2 I-J				
		Pre-set to Full Install: 20N < F < 40N without terminals 20N < F < 40N with terminals (properly installed)	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	Force (F):
		With Improperly Installed Terminals (1) ISL/TPA must not seat when force (F) is applied (2) Terminal Retention meets 6.4.2 B	TBD	TBD	TBD	TBD				required to seat the device when all terminals are located
ical	Engage/Disengage Force TPA/ISL 6.4.2 I	Full Install to Pre-set: 20N < F < 45N	TBD	TBD	TBD	TBD				properly.
chani		Removal from Housing: 20N Min	TBD	TBD	TBD	TBD				\geq 1.5mm nominal size terminals
tor - Me		Connection Mating Force with ISL/TPA Improperly Assembled: Minimum 2x the mating force of the connector pair	TBD	TBD	TBD	TBD				and 60N for <1.5mm terminals.
Connect		Pre-set to Full Install: 60N Min unmated connector 15N Min -30N Max mated connector	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	This test is required for
	Engage/Disengage Force CPA 6.4.2 J	Full Install to Pre-set: 15N Min-30N Max	TBD	TBD	TBD	TBD				See Note 1 for Squib
		Removal from housing: 60N Min	TBD	TBD	TBD	TBD				Connections and Active CPA's
	Engage/Disengage Force Wire Shield	Insertion Force 60N Max Extraction Force 110N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	This test is required for connectors with wire shields only

		DESIGN VI	ERIFICA	TION PLAN A	ND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	1 Engineer:	Andrew Hjelt
Syste N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013						4			▼ Production
				Test Re	sults		Minimum	Tim	ing	
lype	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test]			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Connector to	Connector Audible Cli	ck PF900	12 6.4.2 M		-		
	Connector to Connector Audible Click 6.4.2 M	No Criteria Required Values to be documented in Test Report	TBD	TBD	TBD	TBD	16 Data points	TBD	TBD	TEST IS FOR REFERENCE ONLY
			Con	nector Drop Test PF	00012 6.4.2	N				
	Connector Drop Test 6.4.2. N	Must pass Visual Inspection after test is performed. Components shall not be displaced from their intended shipping position All connectors with body mounting or sealing features must not exhibit any damage that would inhibit function	TBD	TBD	TBD	TBD	18 Data Points (3 for each connector surface)	TBD	TBD	
		Conne	ctor Mountin	g Feature Mechanical	Strength	PF90012 6.4.2 O				
al	Mounting Feature Mechanical Strength 6.4.2. O	The minimum force required to break the mounting feature or separate the connector from the mounting feature in the direction: F1 to F5 > 50 N F6 > 110 N	TBD	TBD	TBD	TBD	30 Data points (5 for each direction)	TBD	TBD	
anic			Mounti	ng Clip Performance	PF90012 6.	4.2 P				
ır - Mech		Engagement force for Clip to Connector 40N Max Retention force for Clip to Connector	TBD TBD	TBD TBD	TBD TBD	TBD TBD	5 Data Points Each Test	TBD	TBD	
onnecto	Mounting Clip Performance 6.4.2 P	120N Min Engagement force for Clip to Panel 45N Max	TBD	TBD	TBD	TBD				
Ŭ		Retention force for Clip to Panel 110N Min	TBD	TBD	TBD	TBD				

		DESIGN VI	ERIFICA	TION PLAN A	ND RE	PORT			Date:	12/11/2020
Asser	nbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syste N/A	m		Subsystem N/A					DVI	P&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									Production
		Test Results Timing Minimum								
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Tomas	Start / End	Start / End	
		Mechanical	Assist Integr	ity (Mechanically Assis	st Connector	rs) PF90012 6.4.2 Q				
		The lever/slide must withstand a 100N force in both the F direction and direction opposite of F in the open and closed positions without separation or damage.	TBD	TBD	TBD	TBD				
	Mechanical Assist 6.4.2. Q	The lever/slide must withstand a 60N force in the midpoint position (lever halfway closed) in both the F direction and direction opposite of F without separation or damage	TBD	TBD	TBD	TBD	5 Data Points	TRD	IBD	
			Head	er Pin Retention PF	90012 6.4.3	Α				
	Header Pin Retention 6.4.3 A	terminal size < 1.2 : 15N Min terminal size ≥ 1.2 : 50N Min **Record force required to displace terminal 0.2mm within housing or board attachment.**	TBD	TBD	TBD	TBD	10 Data points	TBD	TBD	This test is required for Header Connectors only

		DESIGN VI	ERIFICA'	FION PLAN	AND REI	PORT			Date:	12/11/2020
Assen	nbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desigr	Engineer:	Andrew Hjelt
Syster N/A	m		Subsystem N/A					DVI	&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									✓ Production
				Test	t Results			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test [Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Vibration	/Mechanical Shock	PF90012 6.4	4.2 K				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm) While shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Mechanical Shock 6.4.2 K	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
sting	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
tor-Electrical Tes	Dry Circuit Resistance 6.3.6 A	$\begin{array}{l} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \mbox{ Max} \\ \leq 1.50mm & 8.0m\Omega \mbox{ Max} \\ \leq 2.80mm & 5.0m\Omega \mbox{ Max} \\ \leq 6.35mm & 1.5m\Omega \mbox{ Max} \ (also for X > 6.35mm) \\ \mbox{ While shorted resistance shall be } \leq 20 \mbox{ m}\Omega \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

DESIGN VERIFICATION PLAN AND REPORT Date: Assembly/Part Number: Component Description:										
Asse	mbly/Part Number:	Component Description:						D. 1	- F	
	1718350-1	MCON 1.2 CB STC BLADE						Desigi	n Engineer:	Andrew Hjelt
Syst N/A	em		Subsystem					DVI	P&R Level:	Prototype
Spec	ifications: AR2 Rev. 6 February 2013		11/11							✓ Production
050	rike kev. of coldary 2015		Test Results Timing							
		Test Results Timing Minimum								
Type	Test Sub-Category	Acceptance Criteria	Acceptance Criteria DV PV Required Data Sched A							Notes
Test '			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
nneci	Vibration 6.4.2 L	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
Co	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm) While shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm)	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

		DESIGN VI	ERIFICA	TION PLAN A	AND RE	PORT			Date:	12/11/2020
Asser	nbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syste N/A	m		Subsystem N/A					DV	P&R Level:	Prototype
Speci USC/	fications: AR2 Rev. 6 February 2013									✓ Production
	Test Results Timing									
pe	Test Sub Category	Accontance Critaria					Minimum Required Data			Notos
t Ty	Test Sub-Category	Acceptance Criteria		DV		PV	Points	Sched	Actual Stort /	Inotes
Tes			Pass/Fail	Result	Pass/Fail	Result		Start / End	End	
			Thermal S	bock PF90012 Secti	on 5.2.1 (Ele	ectrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
esting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm $10.0m\Omega$ Max ≤ 1.50 mm $8.0m\Omega$ Max ≤ 2.80 mm $5.0m\Omega$ Max ≤ 6.35 mm $1.5m\Omega$ Max (also for X > 6.35mm) While shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
trical To	Thermal Shock 5.2.1	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
tor-Elec	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20

		DESIGN V	ERIFICAT	FION PLAN	AND REI	PORT			Date:	12/11/2020
Assem	bly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desig	n Engineer:	Andrew Hjelt
Syster N/A	n		Subsystem N/A					DVI	P&R Level:	Prototype
Specif USCA	ications: R2 Rev. 6 February 2013									✓ Production
				Test	Results		Minimum	Tin	uing	
Type	Test Sub-Category Acceptance Criteria DV PV						Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
Connec	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm)While shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm)	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
		Tem	perature/Humi	dity Cycling PF9	0012 Section 5.	.2.2 (Electrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
ting	Dry Circuit Resistance 6.3.6 A	$ \begin{array}{l} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \ (also \ for \ X > 6.35mm) \\ \mbox{While shorted resistance shall } be < 20 \ m\Omega \end{array} $	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
ical Test	Temp/Humidity Cycling 5.2.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	

		DESIGN VI	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asser	mbly/Part Number:	Component Description:						Desig	n Engineen	Andrew Hight
	1718350-1	MCON 1.2 CB STC BLADE						Desig	a Engineer:	Andrew Hjelt
Syste	em		Subsystem					DVI	P&R Level:	Prototype
Speci	ifications:		1.1.1.1							▼ Production
USCA	AR2 Rev. 6 February 2013									
	Test Results Minin									
ype	Test Sub-Category Acceptance Criteria DV P						Required Data	Sched	Actual	Notes
Test T			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
-Electr	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
Connector	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): $\leq 0.64mm$ $10.0m\Omega$ Max $\leq 1.50mm$ $8.0m\Omega$ Max $\leq 2.80mm$ $5.0m\Omega$ Max $\leq 6.35mm$ $1.5m\Omega$ Max (also for X > $6.35mm$) While shorted resistance shall be < $20 m\Omega$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): $\leq 0.64mm$ $10.0m\Omega$ Max $\leq 1.50mm$ $8.0m\Omega$ Max $\leq 2.80mm$ $5.0m\Omega$ Max $\leq 6.35mm$ $1.5m\Omega$ Max (also for X > $6.35mm$) While shorted resistance shall be < $20 m\Omega$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
		Hig	h Temperatur	e Exposure PF90	012 Section 5.2	2.3 (Electrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
lesting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm)While shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

		DESIGN V	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Assen	nbly/Part Number:	Component Description:						Docia	n Engineen	Andrew Hight
	1718350-1	MCON 1.2 CB STC BLADE						Desig	n Engmeer:	Andrew Hjelt
Syste: N/A	m		Subsystem					DV	P&R Level:	Prototype
Speci	fications:		10/11							✓ Production
USCA	AR2 Rev. 6 February 2013									
		Test Results Timing								
lype	Test Sub-Category	Test Sub-Category Acceptance Criteria DV PV						Sched	Actual	Notes
Test 1			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
ctrical 7	High Temp Exposure 5.2.3	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
Connector-Ele	Dry Circuit Resistance 6.3.6 A	$\begin{array}{ll} Total \ connection \ resistance \ (crimp-to-crimp): \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \ (also \ for \ X > 6.35mm) \\ While \ shorted \ resistance \ shall \ be < 20 \ m\Omega \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max (also for X > 6.35mm) While shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
			Heavy	y Duty Test PF900	12 Section 5.2	.4				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
ĺ	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	6 Terminal Pairs	TBD	TBD	
esting	Dry Circuit Resistance 6.3.6 A	$\begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \ (also for X > 6.35mm) \\ \mbox{While shorted resistance shall be } < 20 \ m\Omega \end{array}$	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	

DESIGN VERIFICATION PLAN AND REPORT Date: Assembly/Part Number: Component Description: Date:											
Asse	nbly/Part Number:	Component Description:						Duda	. F		
	1718350-1	MCON 1.2 CB STC BLADE						Design	i Engineer:	Andrew Hjelt	
Syste N/A	m		Subsystem N/A					DVI	P&R Level:	Prototype	
Spec USC.	fications: AR2 Rev. 6 February 2013									✓ Production	
	Test Results Timing										
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes	
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End		
trical T	Heavy Duty Test 5.2.4	Conditioning Step Only	N/A	N/A	N/A	N/A	6 Data Points	TBD	TBD		
Connector-Elec	Dry Circuit Resistance 6.3.6 A	$\begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \ (also for X > 6.35mm) \\ \mbox{While shorted resistance shall be } < 20 \ m\Omega \end{array}$	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD		
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD		
	Temperature Rise at Max De- Rated Current (Per Cycle)	Maximum allowed T-Rise on the terminal at the end of each cycle is 50 deg C. Temperature on any terminal shall not exceed the terminal's max temperature rating at any time during the test	TBD	Cycle 1 = TBD Cycle 2 = TBD Cycle 3 = TBD Cycle 4 = TBD Cycle 5 = TBD	TBD	Cycle 1 = TBD Cycle 2 = TBD Cycle 3 = TBD Cycle 4 = TBD Cycle 5 = TBD	6 Data Points	TBD	TBD		

		DESIGN VI	ERIFICA	TION PLAN	AND REF	PORT			Date:	12/11/2020
Assem	bly/Part Number:	Component Description:						Desig	n Engineer:	Andrew Hielt
	1718350-1	MCON 1.2 CB STC BLADE						Desig		Indiew Hjen
Systen N/A	1		Subsystem N/A					DVI	P&R Level:	Prototype
Specifi USCA	cations: R2 Rev. 6 February 2013									✓ Production
- obert	(2 10). 01 contaily 2013									
				Test	t Results		Minimum	Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Thermal Sho	ck PF90012 Sectio	on 5.2.1 (Enviro	onmental)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
sting	Thermal Shock 5.2.1	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
ntal Te	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1 μ second. 1 μ sec > Resistance of terminal pair > 7 Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
vironme	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Connector-En	Dielectric Strength 6.3.7B	 No dielectric breakdown or flash over shall occur between cavities at any time No dielectric breakdown or flash over shall occur between cavities and the outside of a connector at any time during the test. 	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

		DESIGN VI	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number: 1718350-1	Component Description: MCON 1.2 CB STC BLADE						Desigr	1 Engineer:	Andrew Hjelt
Syste N/A	m		Subsystem N/A					DVI	&R Level:	Prototype
Speci USC.	ifications: AR2 Rev. 6 February 2013									▼ Production
				Test	Results			Tim	ing	
lype	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test 1			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture Conditioning Terminal Size: ≤ 0.64 :60 N Min ≤ 1.5 mm70N Min ≤ 2.8 mm100N Min ≤ 6.3 mm130N Min ≤ 9.5 mm150N Min>9.5mm200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
			Thermal Cycl	ing PF90012 Section	on 5.2.2 (Envi	ronmental)		-		
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
ing	Thermal Cycling 5.2.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
tal Test	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20

DESIGN VERIFICATION PLAN AND REPORT Date: Assembly/Part Number: Component Description:										
Asse	mbly/Part Number:	Component Description:						Desig	n Engineer:	Andrew Hielt
	1718350-1	MCON 1.2 CB STC BLADE						8-		
Syste N/A	m		Subsystem N/A					DVI	P&R Level:	Prototype
Speci USC	fications: AR2 Rev. 6 February 2013									✓ Production
				Tes	Results			Tim	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
ironmen	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Connector-Env	Dielectric Strength 6.3.7B	 No dielectric breakdown or flash over shall occur between cavities at any time No dielectric breakdown or flash over shall occur between cavities and the outside of a connector at any time during the test 	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture ConditioningTerminal Size: ≤ 0.64 :60 N Min ≤ 1.5 mm70N Min ≤ 2.8 mm100N Min ≤ 6.3 mm130N Min ≤ 9.5 mm150N Min>9.5mm200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

		DESIGN VI	ERIFICA	TION PLAN	AND RE	PORT			Date:	12/11/2020
Asse	mbly/Part Number:	Component Description:						Dogig	. Engineen	Andrew High
	1718350-1	MCON 1.2 CB STC BLADE						Desigi	I Engineer:	Andrew Hjen
Syste N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec	ifications:									✓ Production
USC.	ARZ Rev. 0 February 2015									
				Test	Results		Minimum	Tim	ing	
ype	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
rest 1			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start /	
		High	Femperature I	Exposure PF90012	Section 5.2.3	(Environmental)			<u>Fild</u>	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Testing	High Temp Exposure 5.2.3	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
nmental	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed 100MΩ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
lector-Enviro	Dielectric Strength 6.3.7B	 No dielectric breakdown or flash over shall occur between cavities at any time No dielectric breakdown or flash over shall occur between cavities and the outside of a connector at any time during the test 	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Connect	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture Conditioning Terminal Size: ≤ 0.64 : 60 N Min ≤ 1.5 mm 70N Min ≤ 2.8 mm 100N Min ≤ 6.3 mm 130N Min ≤ 9.5 mm 150N Min >9.5mm 200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

		DESIGN V	ERIFICA	FION PLAN A	AND RE	PORT			Date:	12/11/2020
Asse	nbly/Part Number:	Component Description:								
	1718350-1	MCON 1.2 CB STC BLADE						Design	n Engineer:	Andrew Hjelt
Syste N/A	m	·	Subsystem N/A					DVF	P&R Level:	Prototype
Spect USC.	fications: AR2 Rev. 6 February 2013									▼ Production
				Test R	Results			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test '			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Flam	mability PF90012	Section 5.2.9					
ironmental Ig	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD				
tor-Env Testin	Flammability 5.2.9	The burn ratio of the material test samples when tested according to ISO-3795 shall be less than 100mm/minute.	TBD	TBD	TBD	TBD	Per ISO-3795	TBD	TBD	
Connec	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD				

		DESIGN VI	ERIFICAT	TION PLAN	AND REP	PORT			Date:	
Ass	embly/Part Number:	Component Description:						Desig	n Engineer:	
									- 2g	
Syst N/A	tem		Subsystem N/A					DVI	?&R Level:	Prototype
Spe	cifications:						•			Production
000	Criticz Rev. 01 condary 2015									
				Test	Results		Minimum	Tin	ing	
Fype	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			• • •		• E					
		Tern	ainal - Connect	or Insertion/Retent	ion Force PF90	0012.6.4.2 А-В		1		
	Insertion Force	Insertion effort must be smooth with no stalling or false lock-up. Maximum Insertion Force (by wire cross section): < 1 mm2: < 15N = 1mm2: < 20N > 1mm2: < 30N	TBD	TBD	TBD	TBD	10 Lg Data Points 10 Sm Data Points			
iical	6.4.2.A	Forward stop must withstand a push-through force of: (By Terminal Size) 0.50mm: > 35N > 0.50mm: > 50N	TBD	TBD	IBD	IBD	See Sec. 6.4.2.A.B Notes 1 & 2			
chan		Mating of a terminal with ISL fully seated shall not be	TBD	TBD	TBD	TBD				
ctor - Me		A minimum load of at least twice the limits of maximum Insertion Force above is required for seated PLR's.	TBD	TBD	TBD	TBD				
Conne	Retention Force w/o Secondary Lock 6.4.2.B	Terminal retention w/o secondary lock:Terminal Size:< 0.64:	TBD	TBD	TBD	TBD	10 Data Points Each Test			
	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture Conditioning Terminal Size: < 0.64:	TBD	TBD	TBD	TBD	10 Data Points Each Test			NOTE 1: Includes connectors not designed for use with secondary lock.

		DESIGN V	ERIFICA	TION PLAN A	ND RE	PORT			Date:	
Asse.	mbly/Part Number:	Component Description:						Design	n Engineer:	
Syste N/A	em		Subsystem N/A					DVF	AR Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013							Production		
				Test R	esults		Minimum	Tim	ing	
Type	Test Sub-Category	Acceptance Criteria	DV PV				Required Data	Sched	Actual	Notes
Test			Pass/Fail Result Pass/Fail Result			Points	Start / End	Start / End		
		>9.5mm 200N Min								

		DESIGN VE	RIFICA	TION PLAN A	AND RE	PORT			Date:	
Asse	embly/Part Number:	Component Description:						Desigr	1 Engineer:	
Syst	tem		Subsystem					DVF	%R Level:	Prototype
Spec	cifications: CAR2 Rev. 6 February 2013		1 1/2 1							Production
				Test	Results			Tim	ling	
be	Test Sub-Category	Accentance Criteria					Minimum Required Data		0	Notes
lest Ty	Tost Sub Category		Pass/Fail	DV Result	Pass/Fail	PV Result	Points	Sched Start / End	Actual Start /	1 VOLUS
L			Terminal/C	avity Polarization Te	st PF90012	6.4.2 C			End	
tor - Mechanical	Terminal/Cavity Polarization Test 6.4.2.C	Terminals inserted at a force 1.5 times the normal insertion force or 15N (whichever is greater) in any incorrect orientation shall not fit or lock into a connector cavity beyond the insulation wings (grips) or cable seal (see Figure 16). There shall be no visible damage to either the terminal or connector that would prevent subsequent correct insertion and function following any attempt at incorrect insertion per this procedure. The expert evaluation shall be completed and	TBD	TBD	TBD	TBD	10 LRG Data points per applicable orientation (minimum 4, see 6.4.2.C.A)	TBD	TBD	NOTE: Where wire buckling and operator sensitivity cause problems in obtaining test repeatability, terminals may be crimped to a gage pin, solid core wire, or other metal dowel material and used to obtain measurements. Samples prepared in this manner require additional connector samples.
nect		Connector to Connector	Mating/Unm	ating Force (Non-me	chanical Assi	st Connectors) PF9	0012 6.4.2 D			
Con	Mating Force 6.4.2.D	Conn mating force shall adhere to USCAR-25: Small grip area < 22 N Medium grip area < 45 N Large grip area < 75 N.	TBD	TBD	TBD	TBD	15 Data Points	TBD	TBD	See Notes 1,2,3 in acceptance criteria
		Disengage force<75N with lock disabled, w/o CPA	TBD	TBD	TBD	TBD	10 Data Points			See Note in Acceptance Criteria regarding latches with difficult
	Unmating Force 6.4.2.D	Disengage force >110N with lock enabled, w/o CPA	TBD	TBD	TBD	TBD	w/o terminals 5 Data Points w/	TBD	TBD	service locations.
		Force to Service: $6N \le F \le 51N$ w/o CPA	TBD	TBD	TBD	TBD	Terminals			

		DESIGN VE	RIFICA '	FION PLAN	AND REF	PORT			Date:	
Asse	mbly/Part Number:	Component Description:						Design	ı Engineer:	
Syste N/A	em	5	Subsystem N/A					DVI	?&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									Production
				Test	i Results			Tim	ing	
lype	Test Sub-Category	Acceptance Criteria		DV		PV	 Minimum Required Data 	Sched	Actual	Notes
Test]			Pass/Fail	Result	Pass/Fail	Result	- Points	Start / End	Start / End	
		Connector to Connector	Mating/Unm	ating Force (Mecha	nically Assisted	d Connectors) PF9	0012 6.4.2 E			
		Conn. to pre-lock shall adhere to USCAR 25: Small grip area < 22 N Medium grip area < 45 N Large grip area < 75 N.	TBD	TBD	TBD	TBD		TBD	TBD	
	Pre-Lock Insertion/Removal 6.4.2 E	The force required to unseat the connector from pre-lock position shall be ≥ 15 N and ≤ 75 N.	TBD	TBD	TBD	TBD	10 Data Points			
nical	Lest A-D	The force required to move the lever from its shipping position while the connector IS NOT in pre-stage position: Class 1 and 2 connectors: 60N Min Class 3 connectors: 90N Min	TBD	TBD	TBD	TBD				
ctor - Mechai	Lock Insertion/Removal Force 6.4.2 E	The force required to move the lever to and from the locked (engaged) position shall meet the requirements of USCAR- Class 1: 22N Max Class 2: 45N Max Class 3: 75N Max	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Conne	Test C	The minimum force required to release the assist feature without depressing the release mechanism (if applicable) shall $be \ge 60$ N for a fully mated connector.	TBD	TBD	TBD	TBD	- For Each Test			
	Connector Latch Retention Force	Un-mating force must be \geq 110N with the primary lock fully engaged. A CPA must NOT be engaged.	TBD	TBD	TBD	TBD	5 Data Points	TRD	TRD	
	0.4.2 E Test D	Un-mating force must be \leq 75N with the primary lock completely disengaged/disabled.	TBD	TBD	TBD	TBD	1 Data Point	IDD	IDD	
	Lever Release Latch Actuation Force 6.4.2 E Test E	The force to completely disengage the secondary connector lock, F, is $6N < F \le 51N$	TBD	TBD	TBD	TBD	5 Data Points	TBD	TBD	

		DESIGN VE	RIFICA	TION PLAN A	ND RE	PORT			Date:	
Asse	mbly/Part Number:	Component Description:						Desig	n Engineer:	
Syste N/A	em		Subsystem N/A					DV	?&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									Production
		1		Test R	lesults			Tin	ing	
e		-					Minimum			
t Typ	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data Points	Sched	Actual Start /	Notes
Tes			Pass/Fail	Result	Pass/Fail	Result		Start / End	End	
			Polarization	n Feature Effectivenes	s PF90012	2 6.4.2 F	-	-		
	Polarization Feature Effectiveness	Minimum mis-mating force ≥ 150N or 3 times the normal mating force unless otherwise specified. No electrical contact can be made under an applied force of less than 150N	TBD	TBD	TBD	TBD	1 Data Points For Each Incorrect Orientation or Mix-Index	TBD	TBD	
nical	6.4.2.F	No physical damage is permissible to mating halves. Expert evaluation has been completed	TBD	TBD	TBD	TBD	1 Data Points For Each Incorrect Orientation or Mix-Index	TBD	TBD	
char			Sc	oop-Proofing PF90	012 6.4.2 G					
onnector - Me	Scoop-Proofing 6.4.2 G	Based on the component manufacturer's drawings there shell be no deformation of male and female terminals, no internal damage to the female spring and no visible damage to either halve of the connector housings.	TBD	TBD	TBD	TBD	1 Populated Pair per Polarity	TBD	TBD	
Ŭ		Both connector housings must have sufficient plastic lead- in alignment features to prevent bent/damaged terminals.	TBD	TBD	TBD	TBD	N/A	TBD	TBD	
			Connec	ctor Seal Retention 1	PF90012 6.4.	2 H				
		Force to remove perimeter seal from female connector shall be >10 N.	TBD	TBD	TBD	TBD	5 Data Points			
	Connector Seal Retention 6.4.2 H	Seal shall remain on the connector and in its design intended position to ensure connector system will pass sealing requirements defined in this document.	TBD	TBD	TBD	TBD	1 Conditioned Mated Pair	TBD	TBD	

		DESIGN VI	ERIFICA'	ΓΙΟΝ PLAN	AND REP	ORT			Date:	
Asse	mbly/Part Number:	Component Description:						Desig	n Engineer:	
Syst N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec	cifications:									Production
	ANZ Rev. 01 coluary 2015									
				Tes	st Results			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria	-	DV		PV	Minimum Required Data Points	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Tomas	Start / End	Start / End	
		Miscell	laneous Compo	nent Engage/Disen	gage Force P	F90012 6.4.2 I-J				
		Pre-set to Full Install: 20N < F < 40N without terminals 20N < F < 40N with terminals (properly installed)	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	Force (F): Add 40N to the maximum force
	Engago/Disangaga Force TPA/IS	With Improperly Installed Terminals (1) ISL/TPA must not seat when force (F) is applied (2) Terminal Retention meets 6.4.2.B	TBD	TBD	TBD	TBD				required to seat the device when all terminals are located
cal	6.4.2 I	Full Install to Pre-set: 20N < F < 45N	TBD	TBD	TBD	TBD				
chani		Removal from Housing: 20N Min	TBD	TBD	TBD	TBD				The minimum force is 80N for ≥ 1.5 mm nominal size terminals
tor - Me		Connection Mating Force with ISL/TPA Improperly Assembled: Minimum 2x the mating force of the connector pair	TBD	TBD	TBD	TBD				and 60N for <1.5mm terminals.
Connec	Engage Diseases as Fores CDA	Pre-set to Full Install: 60N Min unmated connector 15N Min -30N Max mated connector	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	This test is required for
	6.4.2 J	Full Install to Pre-set: 15N Min-30N Max	TBD	TBD	TBD	TBD				See Note 1 for Squib
		Removal from housing: 60N Min	TBD	TBD	TBD	TBD				Connections and Active CPA's
	Engage/Disengage Force Wire Shield	Insertion Force 60N Max Extraction Force 110N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	This test is required for connectors with wire shields only

		DESIGN VE	RIFICA	TION PLAN A	ND RE	PORT			Date:	
Asse	embly/Part Number:	Component Description:						Design	n Engineer:	
								D rong I		
Syste N/A	em		Subsystem N/A					DVF	&R Level:	Prototype
Spec USC	cifications: CAR2 Rev. 6 February 2013									Production
				Test Re	esults		N	Tim	ing	
Lype	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test 7			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Connector to	Connector Audible Cli	ck PF900	12 6.4.2 M				
	Connector to Connector Audible Click USCAR 5.4.7	No Criteria Required Values to be documented in Test Report	TBD	TBD	TBD	TBD	16 Data points	TBD	TBD	TEST IS FOR REFERENCE ONLY
			Coni	nector Drop Test PF9	0012 6.4.2	N				
	Connector Drop Test 6.4.2. M	Must pass Visual Inspection after test is performed. Components shall not be displaced from their intended shipping position All connectors with body mounting or sealing features must not exhibit any damage that would inhibit function	TBD	TBD	TBD	TBD	18 Data Points (3 for each connector surface)	TBD	TBD	
		Conne	ctor Mountin	g Feature Mechanical	Strength 1	PF90012 6.4.2 O				
al	Mounting Feature Mechanical Strength 6.4.2. O	The minimum force required to break the mounting feature or separate the connector from the mounting feature in the direction: F1 to F5 > 50 N F6 > 110 N	TBD	TBD	TBD	TBD	30 Data points (5 for each direction)	TBD	TBD	
anic			Mountir	ng Clip Performance	PF90012 6.	4.2 P				
- Mech		Engagement force for Clip to Connector 40N Max Retention force for Clip to Connector	TBD	TBD	TBD	TBD	5 Data Points Each Test	TBD	TBD	
nector	Mounting Clip Performance 6.4.2 P	120N Min Engagement force for Clip to Panel	TBD	TBD	TBD	TBD				
Cont		45N Max Retention force for Clip to Panel 110N Min	TBD	TBD	TBD	TBD				

	DESIGN VERIFICATION PLAN AND REPORT Date: embly/Part Number: Component Description:									
Asse	nbly/Part Number:	Component Description:						Desig	n Engineer:	
Syste N/A	m		Subsystem N/A					DV	P&R Level:	Prototype
Spec	ifications:									Production
000	INZ ROV. O FOOTUARY 2015							-		
				Test	Results		Minimum	Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
		Mechanical	Assist Integri	ity (Mechanically As	sist Connectors	s) PF90012 6.4.2 C	2			
		The lever/slide must withstand a 100N force in both the F direction and direction opposite of F in the open and closed positions without separation or damage.	TBD	TBD	TBD	TBD	5 D. to Deinte	TPD	TDD	
	Mechanicai Assist 0.4.2. Q	The lever/slide must withstand a 60N force in the midpoint position (lever halfway closed) in both the F direction and direction opposite of F without separation or damage	TBD	TBD	TBD	TBD	- 5 Data Points		IBD	
			Heade	er Pin Retention I	PF90012 6.4.3 /	A				
	Header Pin Retention 6.4.3 A	terminal size < 1.2 : 15N Min terminal size ≥ 1.2: 50N Min **Record force required to displace terminal 0.2mm within housing or board attachment.**	TBD	TBD	TBD	TBD	10 Data points	TBD	TBD	This test is required for Header Connectors only
			Vibratior	n/Mechanical Shock	PF90012 6.4	.2 K				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Dry Circuit Resistance 6.3.6 A	$ Total connection resistance (crimp-to-crimp): \\ \leq 0.64mm 10.0m\Omega Max \\ \leq 1.50mm 8.0m\Omega Max \\ \leq 2.80mm 5.0m\Omega Max \\ \leq 6.35mm 1.5m\Omega Max \\ > 6.35mm 1.5m\Omega Max \\ While shorted resistance shall be < 20 m\Omega $	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Mechanical Shock 6.4.2 K	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	

	DESIGN VERIFICATION PLAN AND REPORT Date: Assembly/Part Number: Component Description:									
Asse	mbly/Part Number:	Component Description:						Desig	n Engineer:	
Syste N/A	em		Subsystem N/A					DV	P&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									Production
				Tes	t Results			Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
ting	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
ctor-Electrical Tes	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Conne	Vibration 6.4.2 L	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
•	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	$\begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \mbox{ Max} \\ \leq 1.50mm & 8.0m\Omega \mbox{ Max} \\ \leq 2.80mm & 5.0m\Omega \mbox{ Max} \\ \leq 6.35mm & 1.5m\Omega \mbox{ Max} \\ \geq 6.35mm & 1.5m\Omega \mbox{ Max} \end{array}$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
		DESIGN VE	CRIFICA	TION PLAN	AND REI	PORT			Date:	
--------------	---	--	------------------	------------------	-------------------	----------	--------------------------	-------------	----------------	--------------------
Asse.	mbly/Part Number:	Component Description:						Desig	n Engineer:	
Syste N/A	m		Subsystem N/A					DV	P&R Level:	Prototype
Spec USC.	ifications: AR2 Rev. 6 February 2013									Production
				Tes	t Results			Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Foints	Start / End	Start / End	
			Thermal Sl	hock PF90012 Sec	ction 5.2.1 (Elec	ctrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
esting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0m\Omega Max ≤ 1.50 mm 8.0m\Omega Max ≤ 2.80 mm 5.0m\Omega Max ≤ 6.35 mm 1.5m\Omega Max While shorted resistance shall be < 20 mΩ	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
rical T	Thermal Shock 6.4.2 K	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
r-Elect	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
Connector	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max ≤ 6.35 mm 1.5 m Ω Max ≤ 0.35 mm 1.5 m Ω Max ≤ 0.35 mm 1.5 m Ω Max	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max < 6.35 mm 1.5 m Ω Max	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

		DESIGN VI	ERIFICA	TION PLAN A	AND RE	PORT			Date:	
Asse	mbly/Part Number:	Component Description:						Desig	1 Engineer:	
Syste N/A	em		Subsystem N/A					DVI	?&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									Production
				Test I	Results			Tim	ing	
ype	Test Sub-Category	Acceptance Criteria		DV		DV/	Minimum Required Data	Sahad	Actual	Notes
Test T			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start /	
		Temp	erature/Hum	idity Cycling PF90	012 Section 5	.2.2 (Electrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
5	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
al Testin	Temp/Humidity Cycling 5.2.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
Electric	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
Connector-	Dry Circuit Resistance 6.3.6 A	$\begin{array}{ll} \mbox{Total connection resistance (crimp-to-crimp):} \\ \leq 0.64mm & 10.0m\Omega \ Max \\ \leq 1.50mm & 8.0m\Omega \ Max \\ \leq 2.80mm & 5.0m\Omega \ Max \\ \leq 6.35mm & 1.5m\Omega \ Max \\ \geq 6.35mm & 1.5m\Omega \ Max \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

		DESIGN V	VERIFICAT	ΓΙΟΝ PLAN	AND REP	ORT			Date:	
Asser	mbly/Part Number:	Component Description:						Desig	n Engineer:	
Syste N/A	m		Subsystem N/A					DV	P&R Level:	Prototype
Speci USC/	ifications: AR2 Rev. 6 February 2013									Production
				Te	st Results			Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	romis	Start / End	Start / End	
	Voltage Drop 6.3.6 B	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm $10.0m\Omega$ Max ≤ 1.50 mm $8.0m\Omega$ Max ≤ 2.80 mm $5.0m\Omega$ Max ≤ 6.35 mm $1.5m\Omega$ Max ≥ 0.35 mm $1.5m\Omega$ Max	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
		F	ligh Temperature	e Exposure PF90	012 Section 5.2.3	(Electrical)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
esting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0 m Ω Max ≤ 1.50 mm 8.0 m Ω Max ≤ 2.80 mm 5.0 m Ω Max ≤ 6.35 mm 1.5 m Ω Max> 6.35 mm 1.5 m Ω MaxWhile shorted resistance shall be < 20 m Ω	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
trical T	High Temp Exposure 5.2.3	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	

	DESIGN VERIFICATION PLAN AND REPORT Date:									
Asser	nbly/Part Number:	Component Description:						Desigr	n Engineer:	
Syste	n		Subsystem					DVI	P&R Level:	Prototype
Speci	fications:		IN/A							Production
USCA	AR2 Rev. 6 February 2013									
				Te	st Results		Minimum	Tim	ing	
Fype	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test [Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
Connector-Ele	Dry Circuit Resistance 6.3.6 A	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	TBD TBD	TBD TBD	TBD	TBD TBD	10 Data Points	TBD	TBD	
	Voltage Drop 6.3.6 B						10 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
			Heavy D	Outy Test PF90	012 Section 5.2.4		-	-		
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	6 Terminal Pairs	TBD	TBD	
sting	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm 10.0m\Omega Max ≤ 1.50 mm 8.0m\Omega Max ≤ 2.80 mm 5.0m\Omega Max ≤ 6.35 mm 1.5m\Omega Max > 6.35mm 1.5m\Omega Max While shorted resistance shall be < 20 mΩ	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	

		DESIGN V	ERIFICA '	FION PLAN	AND REF	PORT			Date:	
Asse	mbly/Part Number:	Component Description:						Desig	1 Engineer:	
Syste N/A	em		Subsystem N/A					DVI	?&R Level:	Prototype
Spec USC.	ifications: AR2 Rev. 6 February 2013									Production
				Test	Results			Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Tomts	Start / End	Start / End	
trical T	Heavy Duty Test 5.2.4	Conditioning Step Only	N/A	N/A	N/A	N/A	6 Data Points	TBD	TBD	
Connector-Elect	Dry Circuit Resistance 6.3.6 A	Total connection resistance (crimp-to-crimp): ≤ 0.64 mm $10.0m\Omega$ Max ≤ 1.50 mm $8.0m\Omega$ Max ≤ 2.80 mm $5.0m\Omega$ Max ≤ 6.35 mm $1.5m\Omega$ Max ≥ 6.35 mm $1.5m\Omega$ Max While shorted resistance shall be $\leq 20 \ m\Omega$	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	6 Data Points	TBD	TBD	
	Temperature Rise at Max De- Rated Current (Per Cycle)	Maximum allowed T-Rise on the terminal at the end of each cycle is 50 deg C. Temperature on any terminal shall not exceed the terminal's max temperature rating at any time during the test	TBD	Cycle 1 = TBD Cycle 2 = TBD Cycle 3 = TBD Cycle 4 = TBD Cycle 5 = TBD	TBD	Cycle 1 = TBD Cycle 2 = TBD Cycle 3 = TBD Cycle 4 = TBD Cycle 5 = TBD	6 Data Points	TBD	TBD	
			Thermal Shoc	k PF90012 Section	n 5.2.1 (Enviro	nmental)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Pressure/Vacuum Leak	Pass/Fail via 5.2.7A (96 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	

		DESIGN VE	RIFICAT	FION PLAN	AND REP	ORT			Date:	
Asse	mbly/Part Number:	Component Description:						Desig	1 Engineer:	
Syste N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									Production
				Tes	t Results			Tin	iing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
56	Thermal Shock 5.2.1	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
ıl Testir	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
ments	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (48 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
viron	Water Submersion 5.2.6	Conditioning Step Only	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
ctor-En	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Conne	High Pressure Spray 5.2.8	Conditioning Step Only	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	Only for S3 Applications
•	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	Only for S3 Applications
	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture ConditioningTerminal Size: ≤ 0.64 :60 N Min $\leq 1.5mm$ 70N Min $\leq 2.8mm$ 100N Min $\leq 6.3mm$ 130N Min $\leq 9.5mm$ 150N Min>9.5mm200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

DESIGN VERIFICATION PLAN AND REPORT Date: Assembly/Part Number: Component Description:										
Asser	nbly/Part Number:	Component Description:						Desig	1 Engineer:	
Syste: N/A	m		Subsystem N/A					DVI	?&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									Production
		Test Results						Tim	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test'			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
		ſ	Thermal Cycl	ing PF90012 Sectio	on 5.2.2 (Envir	conmental)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed 100MΩ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (96 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
50	Thermal Cycling 5.2.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
l Testin	Circuit Continuity 6.4.2 K	No loss of electrical contiinuity for more than 1μ second. 1μ sec > Resistance of terminal pair > 7Ω	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	Refer to Figure 20
nenta	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (48 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	

		DESIGN VERIFICATION PLAN AND REPORT Date:								
Asse	embly/Part Number:	Component Description:					Ĩ	Desig	n Engineer:	
								Desigi	ii Engineer.	
Syst N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec	AP2 Pay 6 February 2013									Production
USC	AK2 KeV. 01 coluary 2013									
				Test	t Results		Minimum	Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test'			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
iron	Water Submersion 5.2.6	Conditioning Step Only	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
ctor-Env	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Conne	High Pressure Spray 5.2.8	Conditioning Step Only	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	Only for S3 Applications
)	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	Only for S3 Applications
	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture Conditioning Terminal Size: ≤0.64: 60 N Min ≤1.5mm 70N Min ≤2.8mm 100N Min ≤6.3mm 130N Min ≤9.5mm 150N Min >9.5mm 200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
		High	Femperature E	Exposure PF90012	2 Section 5.2.3 (Environmental)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	

		DESIGN V	ERIFICA	ΓΙΟΝ PLAN	AND REF	PORT			Date:	
Asse	mbly/Part Number:	Component Description:						Desig	n Engineer:	
Syste N/A	em		Subsystem N/A					DVI	P&R Level:	Prototype
Spec USC	ifications: AR2 Rev. 6 February 2013									Production
				Tes	st Results			Tim	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Minimum Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (96 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
sting	High Temp Exposure 5.2.3	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
tal Te	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (48 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
nmen	Water Submersion 5.2.6	Conditioning Step Only	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
r-Enviro	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
necto	High Pressure Spray 5.2.8	Conditioning Step Only	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	Only for S3 Applications
Con	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	Only for S3 Applications
	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture Conditioning Terminal Size: ≤ 0.64: 60 N Min ≤ 1.5mm 70N Min ≤ 2.8mm 100N Min ≤ 6.3mm 130N Min ≤9.5mm 150N Min >9.5mm 200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

		DESIGN V	ERIFICA	TION PLAN	AND REF	PORT			Date:	
Asse	nbly/Part Number:	Component Description:						Desig	1 Engineer:	
Syste N/A	m		Subsystem					DV	P&R Level:	Prototype
Spec	ifications:		10/7x							Production
030	AK2 Kev. 0 rebluary 2015									
				Tes	t Results		Minimum	Tin	ing	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test '			Pass/Fail	Result	Pass/Fail	Result	Points	Start / End	Start / End	
			Fluid Resistan	ce PF90012 Section	on 5.2.5 (Envir	onmental)				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed 100MΩ at	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
gu	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (96 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
Testi	Fluid Resistance 5.2.3	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
onmental	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
Envir	Hansafar Franci	Disengage force<75N with lock disabled, w/o CPA	TBD	TBD	TBD	TBD	10 Data Points			See Note in Acceptance Criteria
ector-]	6.4.2.D	Disengage force >110N with lock enabled, w/o CPA	TBD	TBD	TBD	TBD	Data Points w/	TBD	TBD	regarding latches with difficult service locations.
nne		Force to Service: $6N \le F \le 51N$ w/o CPA	TBD	TBD	TBD	TBD	Terminais			
Co	Retention Force w/ Secondary Lock 6.4.2.B	Post Moisture Conditioning Terminal Size: ≤ 0.64 :60 N Min $\leq 1.5mm$ 70N Min $\leq 2.8mm$ 100N Min $\leq 6.3mm$ 130N Min $\leq 9.5mm$ 150N Min>9.5mm200N Min	TBD	TBD	TBD	TBD	10 Data Points Each Test	TBD	TBD	NOTE 1: Includes connectors not designed for use with secondary lock.
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	

		DESIGN V	ERIFICA	FION PLAN	AND REI	PORT			Date:	
Assen	nbly/Part Number:	Component Description:						Desig	n Engineer:	
Syster N/A	m		Subsystem N/A					DV	P&R Level:	Prototype
Speci USCA	fications: AR2 Rev. 6 February 2013									Production
				Tes	t Results		Minimum	Tin	ning	
Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result	FUIIIIS	Start / End	Start / End	
			Flam	mability PF9001	2 Section 5.2.9					
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD				
	Flammability 5.2.9	The burn ratio of the material test samples when tested according to ISO-3795 shall be less than 100mm/minute.	TBD	TBD	TBD	TBD	Per ISO-3795	TBD	TBD	
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD				

DESIGN VERIFICATION PLAN AND REPORT Date: Assembly/Part Number: Component Description:										
Assen	ıbly/Part Number:	Component Description:						Desig	n Engineer:	
Syster N/A	n		Subsystem N/A					DVI	&R Level:	Prototype
Specif USCA	fications: R2 Rev. 6 February 2013									Production
				Test R	esults		Minimum	Tim	ing	
t Type	Test Sub-Category	Acceptance Criteria		DV		PV	Required Data Points	Sched	Actual	Notes
Test			Pass/Fail	Result	Pass/Fail	Result		Start / End	Start / End	
		P	ressure/Vacuu	m Leak Stand Alone	PF90012	Section 5.2.7				
	Visual Examination 6.2.1	There shall be no corrosion, discoloration, cracks, etc., which could affect the functionality of the part Swelling or physical distortion shall not exceed the tolerances specified on the part drawing.	TBD	TBD	TBD	TBD	10 Connector Pairs	TBD	TBD	
	Connector Conditioning 1.8.2	Conditioning Step Only	N/A	N/A	N/A	N/A	10 Connector Pairs	TBD	TBD	
lesting	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
ental 7 .8	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (48 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
ivironme CAR 5.9	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
nector-Er US	70 Hour Heat Soak	Conditioning Step Only	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Con	Pressure/Vacuum Leak 5.2.7	Pass/Fail via 5.2.7A (48 kPa min)	TBD	TBD	TBD	TBD	10 Connectors Pass/Fail	TBD	TBD	
	Insulation Resistance 6.3.7 A	Resistance between every combination of two adjacent terminals in the CUT must exceed $100M\Omega$ at 500VDC.	TBD	TBD	TBD	TBD	10 Data Points	TBD	TBD	
	Pressure/Vacuum Leak 5.2.7	TEST TO FAILURE	N/A	Record Values Reference Only	N/A	Record Values Reference Only	10 Data Points	TBD	TBD	

Supplier:	
Supplier Part Number:	
Part Description	
Date	

Number	Component	Test Name	Acceptance Criteria	Measured Value	Countermeasure	Results

Comments:			

Please note, all failures must have definitive analysis reports determining root cause and corresponding countermeasure investigations

Failures	Yes No	
Temperature Class		1
		2
		3
		4
		5
Vibration Class		1
		2
		3
		4

Section 4 Design FMEA

See Section A for nondisclosure conditions. The Design FMEA, if included, is a Class II confidential document belonging to TE Connectivity. A class II document may not be further distributed and is subject to the conditions of the nondisclosure agreement.

Process Flow Diagram

See Section A for nondisclosure conditions. The Process Flow Diagram, if included, is a Class II confidential document belonging to TE Connectivity. A class II document may not be further distributed and is subject to the conditions of the nondisclosure agreement.

Process FMEA

See Section A for nondisclosure conditions. The Process FMEA, if included, is a Class II confidential document belonging to TE Connectivity. A class II document may not be further distributed and is subject to the conditions of the nondisclosure agreement.

Control Plan

See Section A for nondisclosure conditions. The Control Plan, if included, is a Class II confidential document belonging to TE Connectivity. A class II document may not be further distributed and is subject to the conditions of the nondisclosure agreement.

Measurement System Analysis

Dimensional Results

Production Part Approval Dimensional Test Results

SUPPLIERVENOR CODE: PART NAME: WON 1.2 GE TAB STC SN DeSign Record ANAGE LEVEL B10 MINISTON-SALEM DIMENSIONAL INSPECTION 3900 Raid/Wile Road (067-060) WINISTON-SALEM DIMENSIONAL INSPECTION Binson-Salem, Not 20101 DESIGN RECORD (ANAGE LEVEL B10 ENSINEERING CHANGE LEVEL B10 ENSINEERING CHANGE DOUMENTS: ITEM DIM.SPEC SPEC./ LIMITS TOL + UNITS DATE inspec OTY.inspec ORGANIZATIONAL MEASUREMENT RESULTS (DATA) OK NOT OK 1 0.63 0.05 0.03 mm 11/24/20 1 0.61 ✓ 2 9.2 0.2 0.2 mm 11/24/20 1 3.63 ✓ 3 3.65 0.1 0.1 mm 11/24/20 1 3.63 ✓ 4 7.5 0 0.2 mm 11/24/20 1 16.34 ✓ 5 16.3 0.2 0.4 mm 11/24/20 1 2.03 ✓ 6 3.0 0.15 mm 11/24/20 1 16.34 ✓ 7 2.0 0.2 <th>ORGANIZAT</th> <th>ION:</th> <th>TE Connecti</th> <th>vity</th> <th></th> <th></th> <th></th> <th>PART NUMBER: 1718350-1</th> <th></th> <th></th>	ORGANIZAT	ION:	TE Connecti	vity				PART NUMBER: 1718350-1		
INSPECTION SALEM DIMENSIONAL INSPECTION Winston-Salem, NG 27101 DESIGN ECOND CHANGE LEVEL: B10 ENINEERING CHANGE DOCUMENTS: ENINEERING CHANGE DOCUMENTS: E	SUPPLIER/V	ENDOR CODE:						PART NAME: MCON 1.2 CB TAB STC SN		
BIOINTERVISE UNACIDATIONAL MEASUREMENT TOL + TOL - ENGINEERING CHANGE DOCUMENTS: WINTEND-Salem, NO 27101 TIEM DIM/SPEC SPEC / LIMTS TOL + UNITS DATE inspec QTV.inspec ORGANIZATIONAL MEASUREMENT RESULTS (DATA) OK NOT OK 1 0.63 0.05 0.03 mm 11/24/20 1 0.61 ✓ 2 9.2 0.2 0.2 mm 11/24/20 1 9.18 ✓ 3 3.66 0.1 0.1 mm 11/24/20 1 3.63 ✓ 4 7.5 0 0.2 mm 11/24/20 1 16.34 ✓ 5 16.3 0.2 0.4 mm 11/24/20 1 3.07 ✓ 6 3.0 0.15 0.15 mm 11/24/20 1 0.203 ✓ 9 0.2 0.15 0.15 mm 11/24/20 1 1.82 ✓	INSPECTION	I FACILITY	WINSTON-S	SALEM DIMEN	ISIONAL INSP	ECTION		DESIGN RECORD CHANGE LEVEL: B10		
Winston-Salem, NC 2710 WORK NC 2710 ORGANIZATIONAL MEASUREMENT RESULTS (DATA) OK NOT OK ITEM DM.SPEC SPEC./LMTS TOL + UNITS DATE inspec QTV, inspec ORGANIZATIONAL MEASUREMENT RESULTS (DATA) OK NOT OK 1 0.63 0.05 0.03 mm 1124/20 1 0.61 ✓ 2 9.2 0.2 0.2 mm 1124/20 1 9.18 ✓ 3 3.65 0.1 0.1 mm 11/24/20 1 9.18 ✓ 4 7.5 0 0.2 mm 11/24/20 1 3.63 ✓ 5 16.3 0.2 0.4 mm 11/24/20 1 3.07 ✓ 6 3.0 0.15 0.15 mm 11/24/20 1 2.03 ✓ 10 2.4 0.1 0.1 mm 11/24/20 1 <td></td> <td></td> <td>3900 Reidsv</td> <td>ville Road (067</td> <td>7-060)</td> <td></td> <td></td> <td>ENGINEERING CHANGE DOCUMENTS:</td> <td></td> <td></td>			3900 Reidsv	ville Road (067	7-060)			ENGINEERING CHANGE DOCUMENTS:		
ITEM DM/SPEC SPEC / LIMTS TOL- UNITS DATE inspec ORGANIZATIONAL MEASUREMENT RESULTS (DATA) OK NOT OK 1 0.63 0.05 0.03 mm 11/24/20 1 0.681 ··· ··· 2 9.2 0.2 0.2 mm 11/24/20 1 9.18 ··· ··· 3 3.65 0.1 0.1 mm 11/24/20 1 3.63 ··· ··· ··· ··· 4 7.5 0 0.2 mm 11/24/20 1 3.63 ··· ··· 5 16.3 0.2 0.4 mm 11/24/20 1 16.34 ··· ··· 7 2.0 0.2 0.15 mm 11/24/20 1 0.619 ··· ··· 9 0.2 0.15 0.15 mm 11/24/20 1 0.266 ··· ··· 11 1.83 0.05 0.05 mm <td< td=""><td></td><td></td><td>Winston-Sal</td><td>em, NC 27101</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			Winston-Sal	em, NC 27101						
Hem DM/SPC TOL + TOL - DM/S DATE inspec OT. Inspec RESULTS (DATA) OK NOT OK 1 0.63 0.05 0.03 mm 11/24/20 1 0.61 \checkmark 1 1 0.61 \checkmark 1 0.61 1 0.61 \checkmark 1 0.61 1 0.61 \checkmark 1 0.61 1 0.61 1 0.61 1 0.61 1 0.61 1 0.61 1 0.61 1 0.61 1 0.61 1 1 1 0.63 1 1 1 1 0.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SPEC.	/ LIMITS				ORGANIZATIONAL MEASUREMENT	01/	NOT OK
Image: Constraint of the second system of the se	ITEM	DINI./SPEC	TOL +	TOL -	UNITS	DATE Inspec	QTY. Inspec	RESULTS (DATA)	UK	NUT OK
1 0.63 0.05 0.03 mm $11/24/20$ 1 0.61 \checkmark 2 9.2 0.2 0.2 mm $11/24/20$ 1 9.18 \checkmark 3 3.65 0.1 0.1 mm $11/24/20$ 1 3.63 \checkmark \checkmark 4 7.5 0 0.2 mm $11/24/20$ 1 7.50 \checkmark 5 16.3 0.2 0.4 mm $11/24/20$ 1 3.67 \checkmark 6 3.0 0.15 0.15 mm $11/24/20$ 1 3.07 \checkmark $ 7 2.0 0.2 0.2 mm 11/24/20 1 2.03 \checkmark 8 6.1 0.3 0.3 mm 11/24/20 1 0.26 \checkmark 9 0.2 0.15 0.15 mm 11/24/20 1 1.82 \checkmark 11 1.83 0.05 0.05 mm 11/24/20$										
2 9.2 0.2 0.2 mm 11/24/20 1 9.18 \checkmark 3 3.65 0.1 0.1 mm 11/24/20 1 3.63 \checkmark 4 7.5 0 0.2 mm 11/24/20 1 7.50 \checkmark 5 16.3 0.2 0.4 mm 11/24/20 1 16.34 \checkmark 6 3.0 0.15 0.15 mm 11/24/20 1 3.07 \checkmark 7 2.0 0.2 0.2 mm 11/24/20 1 2.03 \checkmark 8 6.1 0.3 0.3 mm 11/24/20 1 0.26 \checkmark 9 0.2 0.15 0.15 mm 11/24/20 1 0.26 \checkmark \checkmark 11 1.83 0.05 0.05 mm 11/24/20 1 1.82 \checkmark 12 1.83 0.05 0.05 mm 11/24/20 1 1.82 \checkmark 13 1.20 0 0.1 <t< td=""><td>1</td><td>0.63</td><td>0.05</td><td>0.03</td><td>mm</td><td>11/24/20</td><td>1</td><td>0.61</td><td>\checkmark</td><td></td></t<>	1	0.63	0.05	0.03	mm	11/24/20	1	0.61	\checkmark	
3 3.65 0.1 0.1 mm 11/24/20 1 3.63 \checkmark 4 7.5 0 0.2 mm 11/24/20 1 7.50 \checkmark 5 16.3 0.2 0.4 mm 11/24/20 1 16.34 \checkmark 6 3.0 0.15 0.15 mm 11/24/20 1 3.07 \checkmark 7 2.0 0.2 0.2 mm 11/24/20 1 2.03 \checkmark 8 6.1 0.3 0.3 mm 11/24/20 1 0.26 \checkmark 9 0.2 0.15 0.15 mm 11/24/20 1 0.26 \checkmark 10 2.4 0.1 0.1 mm 11/24/20 1 1.82 \checkmark 11 1.83 0.05 0.05 mm 11/24/20 1 1.82 \checkmark 11 1.83 0.05 0.05 mm 11/24/20 1 1.82 \checkmark 113 1.20 0 0.1 mm <	2	9.2	0.2	0.2	mm	11/24/20	1	9.18	✓	
47.500.2mm11/24/2017.50 \checkmark 516.30.20.4mm11/24/20116.34 \checkmark 63.00.150.15mm11/24/2013.07 \checkmark 72.00.20.2mm11/24/2012.03 \checkmark 86.10.30.3mm11/24/2010.26 \checkmark 90.20.150.15mm11/24/2010.26 \checkmark 102.40.10.1mm11/24/2011.82 \checkmark 111.830.050.05mm11/24/2011.82 \checkmark 121.830.050.05mm11/24/2011.82 \checkmark 131.2000.1mm11/24/2010.K \checkmark 14MIN 6.5 \cdot \cdot mm11/24/2010.10.K152.10.30.3mm11/24/2012.17 \checkmark 161.10.20.2mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2012.93 \checkmark 191.600.20.2mm11/24/2012.68 \checkmark	3	3.65	0.1	0.1	mm	11/24/20	1	3.63	✓	
5 16.3 0.2 0.4 mm $11/24/20$ 1 16.34 \checkmark 6 3.0 0.15 0.15 mm $11/24/20$ 1 3.07 \checkmark 7 2.0 0.2 0.2 mm $11/24/20$ 1 2.03 \checkmark 8 6.1 0.3 0.3 mm $11/24/20$ 1 6.19 \checkmark 9 0.2 0.15 0.15 mm $11/24/20$ 1 0.26 \checkmark 10 2.4 0.1 0.1 mm $11/24/20$ 1 0.26 \checkmark 11 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 12 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 13 1.20 0 0.1 mm $11/24/20$ 1 $0.0K$ \checkmark 14 MiN 6.5 $ -$ mm $11/24/20$ 1 0.16 \checkmark \checkmark	4	7.5	0	0.2	mm	11/24/20	1	7.50	✓	
6 3.0 0.15 0.15 mm 11/24/20 1 3.07 \checkmark 7 2.0 0.2 0.2 mm 11/24/20 1 2.03 \checkmark 8 6.1 0.3 0.3 mm 11/24/20 1 6.19 \checkmark 9 0.2 0.15 0.15 mm 11/24/20 1 0.26 \checkmark 10 2.4 0.1 0.1 mm 11/24/20 1 0.26 \checkmark 11 1.83 0.05 0.05 mm 11/24/20 1 1.82 \checkmark 12 1.83 0.05 0.05 mm 11/24/20 1 1.82 \checkmark 13 1.20 0 0.1 mm 11/24/20 1 1.18 \checkmark 14 MIN 6.5 $ -$ mm 11/24/20 1 2.17 \checkmark 15 2.1 0.3 0.3 mm 11/24/20 1 2.14 \checkmark 1 16 1.1 0.2 0.2	5	16.3	0.2	0.4	mm	11/24/20	1	16.34	✓	
72.0 0.2 0.2 mm $11/24/20$ 1 2.03 \checkmark 8 6.1 0.3 0.3 mm $11/24/20$ 1 6.19 \checkmark 9 0.2 0.15 0.15 mm $11/24/20$ 1 0.26 \checkmark 10 2.4 0.1 0.1 mm $11/24/20$ 1 2.36 \checkmark 11 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 12 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 13 1.20 0 0.1 mm $11/24/20$ 1 1.18 \checkmark 14MIN 6.5 $ -$ mm $11/24/20$ 1 0.6 \checkmark 15 2.1 0.3 0.3 mm $11/24/20$ 1 2.06 \checkmark 16 1.1 0.2 0.2 mm $11/24/20$ 1 2.06 \checkmark 18 2.90 0.3 0.3 mm $11/24/20$ 1 2.93 \checkmark 19 1.60 0.2 0.2 mm $11/24/20$ 1 1.64 \checkmark	6	3.0	0.15	0.15	mm	11/24/20	1	3.07	✓	
8 6.1 0.3 0.3 mm $11/24/20$ 1 6.19 \checkmark 9 0.2 0.15 0.15 mm $11/24/20$ 1 0.26 \checkmark 10 2.4 0.1 0.1 mm $11/24/20$ 1 2.36 \checkmark 11 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 12 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 13 1.20 0 0.1 mm $11/24/20$ 1 1.18 \checkmark 14 MIN 6.5 - - mm $11/24/20$ 1 0K \checkmark 15 2.1 0.3 0.3 mm $11/24/20$ 1 2.06 \checkmark 16 1.1 0.2 0.2 mm $11/24/20$ 1 2.06 \checkmark 18 2.90 0.3 0.3 mm $11/24/20$ 1 1.64 \checkmark 19 1.60 0.2 0.2	7	2.0	0.2	0.2	mm	11/24/20	1	2.03	✓	
9 0.2 0.15 0.15 mm $11/24/20$ 1 0.26 \checkmark 10 2.4 0.1 0.1 mm $11/24/20$ 1 2.36 \checkmark 11 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 12 1.83 0.05 0.05 mm $11/24/20$ 1 1.82 \checkmark 13 1.20 0 0.1 mm $11/24/20$ 1 1.82 \checkmark 14MIN 6.5 $ -$ mm $11/24/20$ 1 $0K$ \checkmark 15 2.1 0.3 0.3 mm $11/24/20$ 1 2.17 \checkmark 16 1.1 0.2 0.2 mm $11/24/20$ 1 1.14 \checkmark 17 2.0 0.3 0.3 mm $11/24/20$ 1 2.06 \checkmark 18 2.90 0.3 0.3 mm $11/24/20$ 1 1.64 \checkmark 20 2.70 0.3 0.3 mm $11/24/20$ 1 1.64 \checkmark	8	6.1	0.3	0.3	mm	11/24/20	1	6.19	✓	
102.40.10.1mm11/24/2012.36 \checkmark 111.830.050.05mm11/24/2011.82 \checkmark 121.830.050.05mm11/24/2011.82 \checkmark 131.2000.1mm11/24/2011.18 \checkmark 14MIN 6.5mm11/24/2010K \checkmark 152.10.30.3mm11/24/2012.17 \checkmark 161.10.20.2mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2011.64 \checkmark 202.700.30.3mm11/24/2012.68 \checkmark	9	0.2	0.15	0.15	mm	11/24/20	1	0.26	✓	
111.830.050.05mm11/24/2011.82 \checkmark 121.830.050.05mm11/24/2011.82 \checkmark 131.2000.1mm11/24/2011.18 \checkmark 14MIN 6.5mm11/24/201OK \checkmark 152.10.30.3mm11/24/2012.17 \checkmark 161.10.20.2mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2012.93 \checkmark 191.600.20.2mm11/24/2012.68 \checkmark	10	2.4	0.1	0.1	mm	11/24/20	1	2.36	✓	
121.830.050.05mm11/24/2011.82 \checkmark 131.2000.1mm11/24/2011.18 \checkmark 14MIN 6.5mm11/24/201OK \checkmark 152.10.30.3mm11/24/2012.17 \checkmark 161.10.20.2mm11/24/2011.14 \checkmark 172.00.30.3mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2012.93 \checkmark 191.600.20.2mm11/24/2011.64 \checkmark	11	1.83	0.05	0.05	mm	11/24/20	1	1.82	✓	
131.2000.1mm11/24/2011.18 \checkmark 14MIN 6.5mm11/24/201OK \checkmark 152.10.30.3mm11/24/2012.17 \checkmark 161.10.20.2mm11/24/2011.14 \checkmark 172.00.30.3mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2012.93 \checkmark 191.600.20.2mm11/24/2011.64 \checkmark 202.700.30.3mm11/24/2012.68 \checkmark	12	1.83	0.05	0.05	mm	11/24/20	1	1.82	\checkmark	
14MIN 6.5mm11/24/201OK \checkmark 152.10.30.3mm11/24/2012.17 \checkmark 161.10.20.2mm11/24/2011.14 \checkmark 172.00.30.3mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2012.93 \checkmark 191.600.20.2mm11/24/2011.64 \checkmark 202.700.30.3mm11/24/2012.68 \checkmark	13	1.20	0	0.1	mm	11/24/20	1	1.18	✓	
152.10.30.3mm $11/24/20$ 12.17 \checkmark 161.10.20.2mm $11/24/20$ 11.14 \checkmark 172.00.30.3mm $11/24/20$ 12.06 \checkmark 182.900.30.3mm $11/24/20$ 12.93 \checkmark 191.600.20.2mm $11/24/20$ 11.64 \checkmark 202.700.30.3mm $11/24/20$ 12.68 \checkmark	14	MIN 6.5	-	-	mm	11/24/20	1	ОК	✓	
161.10.20.2mm11/24/2011.14 \checkmark 172.00.30.3mm11/24/2012.06 \checkmark 182.900.30.3mm11/24/2012.93 \checkmark 191.600.20.2mm11/24/2011.64 \checkmark 202.700.30.3mm11/24/2012.68 \checkmark	15	2.1	0.3	0.3	mm	11/24/20	1	2.17	✓	
17 2.0 0.3 0.3 mm $11/24/20$ 1 2.06 \checkmark 18 2.90 0.3 0.3 mm $11/24/20$ 1 2.93 \checkmark 19 1.60 0.2 0.2 mm $11/24/20$ 1 1.64 \checkmark 20 2.70 0.3 0.3 mm $11/24/20$ 1 2.68 \checkmark	16	1.1	0.2	0.2	mm	11/24/20	1	1.14	✓	
18 2.90 0.3 0.3 mm 11/24/20 1 2.93 ✓ 19 1.60 0.2 0.2 mm 11/24/20 1 1.64 ✓ 20 2.70 0.3 0.3 mm 11/24/20 1 2.68 ✓	17	2.0	0.3	0.3	mm	11/24/20	1	2.06	✓	
19 1.60 0.2 0.2 mm 11/24/20 1 1.64 ✓ 20 2.70 0.3 0.3 mm 11/24/20 1 2.68 ✓	18	2.90	0.3	0.3	mm	11/24/20	1	2.93	✓	
20 2.70 0.3 0.3 mm 11/24/20 1 2.68 🗸	19	1.60	0.2	0.2	mm	11/24/20	1	1.64	✓	
	20	2.70	0.3	0.3	mm	11/24/20	1	2.68	✓	

Blanket statement of conformance are unacceptable for any test results.

CFG-1003

<u>SIGNATURE</u>	TITLE	DATE
Andrew Hjelt	TE - Product Engineer	12/3/2020

	THIS DRAWING IS UNPUBLISH VERTRAULICHE UNVERGEFFENTLICHTE	ED. ZEICHNUNG To Electronics AMP GmbH	RELEASED FOR PUB FREI FUER VEROEFFENTI ALL RIGHTS	LICATION - ICHUNG RESERVED.	7 2003	MATED WITH PASSEND ZU:	f:	6		5			
D		9	2±0.2 2	3.6 (0.5)	7.5 _{-0.2} 4	L +0.2 5		±0.3 8 B±0.2			10 ^{100⁴⁴/₂}	1.83 ^{±0.05} 11	
С		14 nin.6.5 /3 /								UT OFF)			
				W IRE- CRII Draht- Crim B-B	MP_p STAND ARE Standar $(- ()$ $(-$	D INSULATION CRIMP d Isolations- Crimp (- H ^{±0.3} 20 (- H ^{±0.3} 20 18	SINGLE WIRE Einzeldichtungs	CRIMP - Crimp ±0.3					
В	2177610-3 A 2177610-1 A 2141116-3 B 	-	1.0-1.5	1.9-2.4	CuSn4 CuSn4	CuSn0.15/0.20 CuSn0.15/0.20	TIN PLATED verzinnt TIN PLATED verzinnt	4 3 TIN PLATED verzinnt 4 3	A = 3.0 B = 2.0 C = 6.8 A = 2.6 B = 2.0	E = 2.6 G = 2.9 $D_{or} = 1.35$ E = 2.0 G = 2.1	$H = 4.4$ $K = 4.3$ $D_{150} = 2.9$ $M = 0.8$ $H = 4.2$ $K = 4.3$ $D_{150} = 2.7$	16.8	SEALING SYSTEM chtungssystem
	2141116-1 A 2141114-3 B 2141114-1 A	-	0.25-0.35	1.1-1.6	CuSn4	CuSn0.15/0.20	TIN PLATED verzinnt	TIN PLATED verzinnt <u>4</u> <u>3</u> TIN PLATED verzinnt	C = 6.4 A = 2.6 B = 2.0 C = 6.4	$D_{pr} = 1.1$ E = 1.8 G = 1.8 $D_{pr} = 0.8$	$M = 0.8$ $H = 4.2$ $K = 4.3$ $D_{150} = 2.6$ $M = 0.8$	16.3	SINGLE WIRE Einzeldi
	1718352-2 - 1718352-1 - 1718350-3 B 1718350-2 B	- - 1718390-3 1718390-2	1.0-1.5	1.9-2.4	CuSn0.15/0.20 CuSn0.15/0.20	CuSn0.15/0.20 CuSn0.15/0.20	TIN PLATED verzinnt TIN PLATED verzinnt	Image: Constraint Image: Constraint Image: Constraint Image: Constraint Image: Constraint Image: Constraint Image: Constraint	A = 3.0 B = 2.0 C = 6.1 A = 3.0 B = 2.0 C = 6.1 A = 6.1 B = 2.0 C = 6.1 C	$E = 2.6$ $G = 2.9$ $D_{or} = 1.35$ $E = 2.0$ $G = 2.1$ $D = 1.1$	$\Pi = 3.7$ $K = 3.9$ $D_{150} = 2.1$ $M = 0.2$ $H = 2.7$ $K = 2.9$ $D_{150} = 1.6$	16.3	R C ABLE Leitung
А	1718350-1 B 1718348-3 A 1718348-2 A 1718348-1 A	1718390-1 1703698-3 1703698-2 1703698-1	0.25-0.35	1.1-1.6	CuSn0.15/0.20 BANNY	CuSn0.15/0.20	TIN PLATED verzinnt	TIN PLATED verzinnt	A = 2.6 B = 2.0 C = 5.7 LENGTH	$U_{pr} = 1.1$ E = 1.8 G = 1.8 $D_{pr} = 0.8$ WIRE CRIMP	M =0 .2 H = 2.6 K =2 .6 D ₁₅₀ = 1.4 M = 0.2	15.3	
	UKULK NO. Bestell-Nr. STRIP Bandware	UKUER NO. Bestell-Nr. LOOSE PIECE Einzelausfuehrung	WIRE RANGE Drahtgroessen- bereich (mm ²)	INSULATION-Ø Isolation-Ø (mm)	Kontaktkoerper MATE Werk	Flachstecker RIAL stoff	Kontaktkoerper SURF Oberfla	Flachstecker ACE aeche	Laenge	CRIMP DIMENSION Crimpabmessungen	Isolationscrimp IS	D I MENSION MASS "L" [mm]	INSULATIO CRIMP FOF Isolationcrimp fuer

4805 (3/11)

LASER WELDED Lasergeschweisst

2 REVISION STATUS Revisionsstand

CONTACT AREA TAB MIN. 0.8 µm SELECTIV GOLD OVER Ni Kontaktzone selectiv vergoldet min.0.8 µm ueber Ni

CONTACT AREA TAB MIN. 2.0 µm SELECTIV SILVER Kontaktzone selectiv versilbert min.2.0 µm

SEE APPLICATION SPECIFICATION TE-SPEC. 114-18464 _7 siehe Verarbeitungsspezifikation

4

Material, Performance Test Results

MDS Report

Substances of assemblies and materials

This report is for internal Automotive industry use only. Distribution to non-Automotive clients is a violation of the Terms of Use, and is not permitted unless a written permission was given by DXC Technology. Parsing is not allowed.

1. Company and Product Name

1.1 Supplier Data

1.2 Product Identification

Name [ID]:	Tyco Electronics GAD [913]	Part/Item No.:	1718350-1
DUNS Number:	-	Description:	AMP MCP 1.2 Tab-CB
			(Assy)
Street/Postal Code:	Amperestr. 12-14	Report No.:	-
Nat./ZipCode/City:	DE 64625 Bensheim	Date of Report:	-
Supplier Code:	-	Purchase Order No.:	-
Contact Person:	IMDS Team (India)	Bill of Delivery No.:	-
	Engineering Services		
- Phone:	-	Preliminary MDS:	No
- Fax No.:	-	IMDS ID / Version:	15694972 / 12
- E-Mail Address:	imds@te.com	Node ID:	963157889
		MDS Status (Change	Internally released
		Date):	(10/06/2020)

2 / 4 12/11/20 9:38:29 PM

MDS Report

Substances of assemblies and materials

Materials which are subject to legal prohibitions must not be included! Dangerous substances formed or released during use must also be declared Please note: GADSL list for substances that require declaration

2. Characterization of the Component

Part/Item No.:	1718350-1	Report No.:	-
Description:	AMP MCP 1.2 Tab-CB (Assy)	IMDS ID / Version:	15694972 / 12
		Node ID:	963157889

Tree Level	 Description Article Name 	Part/Item No. Item- /MatNo.	IMDS ID / Version	Quantity	🥥 🏈 🌯 Weight	Portion	Portion	🄩 Classif.	Parts Marking Recyclate
	Name	Material-No.			[q]	[%]	(from - to) [%]	GADSL, SVHC	(Indust./Consumer)
1	AMP MCP 1.2 Tab-CB (Assy)	<i>(</i> 718350-1	15694972 / 12		0.2451				
-2	Body			1	0.14				
-3	🍫 CuSn0,15		10767190 / 5		0.1386			* 3.2	🌯 No
-4	4) Copper	4 7440-50-8				99.7475		4) D	
-4	A Misc., not to declare	4 system				0.05	0 - 0.1		

EntServ Deutschland GmbH

IMDS ID / Version:	15694972 / 12	Page:	3/4
User:	Casas, Luis	Date:	12/11/20 9:38:29 PM

Tree Level	 Description Article Name Name 	 Part/Item No. Item- /MatNo. Material-No. 	🥥 🌛 🔩 IMDS ID / Version	Quantity	🥥 🏈 🌯 Weight	i 🏈 🍫 📣 Portion	Jortion Portion (from - to)	Classif. QADSL,	Parts Marking Recyclate (Indust./Consumer)
	\land Substance name	4 CAS No.			[g]	[%]	[%]	SVHC	Application [ID]
-4	4 Phosphorus	4) 7723-14-0				0.0075	0 - 0.015		
-4	4) Iron	4 7439-89-6				0.01	0 - 0.02		
-4	4) Zinc (metal)	4 7440-66-6				0.05	0 - 0.1		
-4	4 Nickel	40-02-0				0.01	0 - 0.02	4) D	4 Not applicable [34]
-4	4) Tin	4 7440-31-5				0.125	0.1 - 0.15		
−3	e-plate Sn (electrodeposited Tin Coatings, bright and matt)		756885 / 6		0.0014			* 4.2	🌯 No
-4	4) Carbon	4 7440-44-0				0.505	0.01 - 1		
-4	4) Sulphur	4 7704-34-9				0.02	0 - 0.04		
4	4 Lead	47439-92-1				0.05	0 - 0.1	📣 D / P / SVHC	Concentration within acceptable GADSL limits [44]
-4	📣 Tin	47440-31-5				99.425			
├ 2	Tab 1.2mm Insert	🥏 1718373-1	15635141 / 12	1	0.1051				
-3	🌯 CuSn0,15		10767190 / 5		0.1046			* 3.2	🌯 No
-4	4) Copper	40-50-8				99.7475		4) D	
-4	Misc., not to declare	4) system				0.05	0 - 0.1		
-4	4 Phosphorus	4 7723-14-0				0.0075	0 - 0.015		
-4	4 Iron	439-89-6				0.01	0 - 0.02		
-4	🔷 Zinc (metal)	4 7440-66-6				0.05	0 - 0.1		
-4	4 Nickel	4 7440-02-0				0.01	0 - 0.02	4) D	A Not applicable [34]
-4	4) Tin	40-31-5				0.125	0.1 - 0.15		

EntServ Deutschland GmbH

IMDS ID / Version:	15694972 / 12	Page:	4/4
User:	Casas, Luis	Date:	12/11/20 9:38:29 PM

Tree Level	 Description Article Name Name Substance name 	 Part/Item No. Item- /MatNo. Material-No. CAS No. 	🥥 🌛 🐁 IMDS ID / Version	Quantity	🥥 🥥 🍫 Weight [g]	کے کی Portion [%]	Portion (from - to) [%]	Classif. GADSL, SVHC	 Parts Marking Recyclate (Indust./Consumer) Application [ID]
- 3	e-plate Sn (electrodeposited Tin Coatings, bright and matt)		756885 / 6		0.0005			* 4.2	🌯 No
-4	4 Carbon	40-44-0				0.505	0.01 - 1		
-4	4) Sulphur	4 7704-34-9				0.02	0 - 0.04		
−4	4 Lead	439-92-1				0.05	0 - 0.1	♦ D / P / SVHC	Concentration within acceptable GADSL limits [44]
-4	4) Tin	4 7440-31-5				99.425			
This is an uncontrolled copy of a document created by IMDS. End of the report.									

Section 11 Initial Process Studies

Qualified Laboratory Documentation

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - IATF 16949:2016

This is to certify that:

TE Connectivity Global Automotive Division Americas North 719 Pegg Road Greensboro North Carolina 27409 USA

operates a Quality Management System which complies with the requirements of IATF 16949:2016 for the following scope:

Design and manufacture of electrical interconnecting devices.

For and on behalf of BSI:

BSI Certificate Number: 514458-007 IATF Number: 0338830

Certification Date: 2018-10-18

tomas Carlos Pitang Chief Operating Assurance - Americas

Page: 1 of 3

Latest Issue: 2018-10-18

...making excellence a habit." Expiry Date: 2021-10-17

This certificate remains the property of BSI and shall be returned immediately upon request. An electronic certificate can be authenticated <u>online</u>. Printed copies can be validated at www.bsigroup.com/ClientDirectory To be read in conjunction with the scope above or the attached appendix. Further clarifications regarding the scope of this certificate and the applicability of IATF 16949 requirements may be obtained by consulting the organization. IATF Contracted Office: BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK.

Americas Headquarters: BSI Group America Inc., 12950 Worldgate Drive, Suite 800, Herndon, VA 20170-6007 USA A Member of the BSI Group of Companies.

Location

TE Connectivity Global Automotive Division Americas North 719 Pegg Road Greensboro North Carolina 27409 USA

Registered Activities

Design and manufacture of electrical interconnecting devices.

Including the following remote support functions:

TE Connectivity Global Automotive Division Americas North 3800 Reidsville Road Winston-Salem North Carolina 27102 USA Supplier management, Sales, Testing, Product design

TE Connectivity **Global Automotive Division** Americas North 20 Esna Park Drive Markham Ontario L3R 1E1 Canada Testing, Product design

TE Connectivity Global Automotive Division Americas North 1901 Fulling Mill Road Middletown Pennsylvania 17057 USA Customer service, Testing, Product design

TE Connectivity Global Automotive Division Americas North 900 Wilshire Boulevard Suite 150 Troy Michigan 48084 USA Product design

BSI Certificate Number: 514458-007 IATF Number: 0338830

Certification Date: 2018-10-18

Latest Issue: 2018-10-18

Expiry Date: 2021-10-17

Page: 2 of 3

This certificate remains the property of BSI and shall be returned immediately upon request. An electronic certificate can be authenticated <u>online</u>. Printed copies can be validated at www.bsigroup.com/ClientDirectory To be read in conjunction with the scope above or the attached appendix.

Further damin control of the scope of this certificate and the applicability of IATF 16949 requirements may be obtained by consulting the organization. IATF Contracted Office: BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK.

Americas Headquarters: BSI Group America Inc., 12950 Worldgate Drive, Suite 800, Herndon, VA 20170-6007 USA A Member of the BSI Group of Companies.

Location	Registered	Activities
	TE Connect North Caro 8000 Piedn Greensbord North Caro 27409 USA Warehousir	tivity lina Distribution Center ont Triad Parkway lina
	TE Connect Global Auto Americas N 2100 Paxto Harrisburg Pennsylvan 17111 USA Testing	ivity motive Division arth n Street ia
	TE Connect 3900 Reids Winston Sa North Carol 27101 USA Testing	ivity ville Road Jem Jina
	TE Connect 3920 Reids Winston Sa North Carol 27101 USA Testing	ivity ville Road Iem Iina
	Including th TE Connect Global Auto Americas N 233 Burges Greensbord North Carol 27409 USA	ne following extended manufacturing sites: ivity omotive Division orth is Road ina
	Design and	manufacture of electrical interconnecting devices
BSI Certificate Number: 514458-007 IATF Number: 0338830		
(bsi.		
Certification Date: 2018-10-18	Latest Issue: 2018-10-18	Expiry Date: 2021-10-17
The second state and share the second set of the second share it is a second set of the second set of	and the second distance of the second s	Page: 3 of 3

This certificate remains the property of BSI and shall be returned immediately upon request. An electronic certificate can be authenticated <u>online</u>. Printed copies can be validated at www.bsigroup.com/ClientDirectory To be read in conjunction with the scope above or the attached appendix. Further clarifications regarding the scope of this certificate and the applicability of IATF 16949 requirements may be obtained by consulting the organization. IATF Contracted Office: BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK.

Americas Headquarters: BSI Group America Inc., 12950 Worldgate Drive, Suite 800, Herndon, VA 20170-6007 USA A Member of the BSI Group of Companies.

Appearance Approval Report

Not Applicable

Section 14 Sample Product

Sent in separate package (if required)

Section 15 Master Sample

Retained at manufacturing location

Section 16 Checking Aids

Not Applicable

AAF214, Rev. D, 23-Jun-2017

Section 17 Records of Compliance with Customer-Specific Requirements

AAF214, Rev. D, 23-Jun-2017

MDS Report

Substances of assemblies and materials

This report is for internal Automotive industry use only. Distribution to non-Automotive clients is a violation of the Terms of Use, and is not permitted unless a written permission was given by DXC Technology. Parsing is not allowed.

1. Company and Product Name

1.1 Supplier Data

1.2 Product Identification

Name [ID]:	Tyco Electronics GAD [913]	Part/Item No.:	1718350-1
DUNS Number:	-	Description:	AMP MCP 1.2 Tab-CB
			(Assy)
Street/Postal Code:	Amperestr. 12-14	Report No.:	-
Nat./ZipCode/City:	DE 64625 Bensheim	Date of Report:	-
Supplier Code:	-	Purchase Order No.:	-
Contact Person:	IMDS Team (India)	Bill of Delivery No.:	-
	Engineering Services		
- Phone:	-	Preliminary MDS:	No
- Fax No.:	-	IMDS ID / Version:	15694972 / 12
- E-Mail Address:	imds@te.com	Node ID:	963157889
		MDS Status (Change	Internally released
		Date):	(10/06/2020)

2 / 4 12/11/20 9:38:29 PM

MDS Report

Substances of assemblies and materials

Materials which are subject to legal prohibitions must not be included! Dangerous substances formed or released during use must also be declared Please note: GADSL list for substances that require declaration

2. Characterization of the Component

Part/Item No.:	1718350-1	Report No.:	-
Description:	AMP MCP 1.2 Tab-CB (Assy)	IMDS ID / Version:	15694972 / 12
		Node ID:	963157889

Tree Level	 Description Article Name 	Part/Item No. Item- /MatNo.	IMDS ID / Version	Quantity	🥥 🌙 🎝 Weight	Portion	Portion	🄩 Classif.	Parts Marking Recyclate
	Name	Material-No.			[q]	[%]	(from - to) [%]	GADSL, SVHC	(Indust./Consumer)
1	AMP MCP 1.2 Tab-CB (Assy)	<i>(</i> 718350-1	15694972 / 12		0.2451				
-2	Body			1	0.14				
-3	🍫 CuSn0,15		10767190 / 5		0.1386			* 3.2	🌯 No
-4	4) Copper	4 7440-50-8				99.7475		4) D	
-4	A Misc., not to declare	4 system				0.05	0 - 0.1		

EntServ Deutschland GmbH

IMDS ID / Version:	15694972 / 12	Page:	3/4
User:	Casas, Luis	Date:	12/11/20 9:38:29 PM

Tree Level	 Description Article Name 	 Part/Item No. Item- /MatNo. 	🥥 🌛 🐁 IMDS ID / Version	Quantity	🥥 🥥 🍫 Weight	🥔 🍫 📣 Portion		Classif.	Parts Marking Recyclate
	Substance name	CAS No.			[g]	[%]	(from - to) [%]	SVHC	(Indust./Consumer)
-4	4 Phosphorus	4) 7723-14-0				0.0075	0 - 0.015		
-4	4) Iron	4) 7439-89-6				0.01	0 - 0.02		
-4	Žinc (metal)	4 7440-66-6				0.05	0 - 0.1		
-4	4 Nickel	4 7440-02-0				0.01	0 - 0.02	📣 D	A Not applicable [34]
-4	4) Tin	4 7440-31-5				0.125	0.1 - 0.15		
−3	e-plate Sn (electrodeposited Tin Coatings, bright and matt)		756885 / 6		0.0014			* 4.2	🌯 No
-4	🔷 Carbon	40-44-0				0.505	0.01 - 1		
-4	4) Sulphur	4 7704-34-9				0.02	0 - 0.04		
4	4 Lead	439-92-1				0.05	0 - 0.1	♦ D / P / SVHC	Concentration within acceptable GADSL limits [44]
-4	📣 Tin	40-31-5				99.425			
−2	Tab 1.2mm Insert	🥥 1718373-1	15635141 / 12	1	0.1051				
-3	🔩 CuSn0,15		10767190 / 5		0.1046			* 3.2	🍫 No
-4	4) Copper	4 7440-50-8				99.7475		4) D	
-4	Misc., not to declare	4) system				0.05	0 - 0.1		
-4	A Phosphorus	4) 7723-14-0				0.0075	0 - 0.015		
-4	4 Iron	4 7439-89-6				0.01	0 - 0.02		
-4	Žinc (metal)	4 7440-66-6				0.05	0 - 0.1		
-4	4 Nickel	4 7440-02-0				0.01	0 - 0.02	4) D	A Not applicable [34]
-4	4) Tin	4 7440-31-5				0.125	0.1 - 0.15		

EntServ Deutschland GmbH

IMDS ID / Version:	15694972 / 12	Page:	4/4
User:	Casas, Luis	Date:	12/11/20 9:38:29 PM

Tree Level	 Description Article Name Name Substance name 	 Part/Item No. Item- /MatNo. Material-No. CAS No. 	🥥 🌛 🐁 IMDS ID / Version	Quantity	🥥 🧼 🔩 Weight [g]	ک کی Portion [%]	کی ک	Classif. GADSL, SVHC	 Parts Marking Recyclate (Indust./Consumer) Application [ID]
-3	e-plate Sn (electrodeposited Tin Coatings, bright and matt)		756885 / 6		0.0005			♣ 4.2	🌯 No
-4	4 Carbon	47440-44-0				0.505	0.01 - 1		
-4	4) Sulphur	4 7704-34-9				0.02	0 - 0.04		
-4	4 Lead	439-92-1				0.05	0 - 0.1		Concentration within acceptable GADSL limits [44]
-4	4) Tin	4 7440-31-5				99.425			
	This is an uncontrolled copy of a document created by IMDS. End of the report.								

Section 18

Part Submission Warrant

AAF214, Rev. D, 23-Jun-2017

Part Submission Warrant

Part Name				Cust. Part N	lumber		
Shown on Drawing Number				Org.Part N	lumber		
Engineering Change Level					Dated		
Additional Engineering Changes					Dated		
Safety and/or Government Regulation	Yes	No	Purchase	e Order No.		Weight (kg)	
Checking Aid Number	Checking Aid	Engineering Cl	hange Level	_		Dated	
ORGANIZATION MANUFACTURING INF	ORMATION		cus	TOMER SU	BMITTAL INFO	RMATION	
Organization Name and Supplier Code			Custo	omer Name/Di	ivision		
Street Address			Buye	r/Buyer Code			
City Region Posta	al Code Coun	ntry	Applie	cation			
MATERIALS REPORTING Has customer-required Substance of Concern in Submitted by IMDS or	formation been report other customer form	ted nat			Yes	No	NA
Are polymeric parts identified with appropriate IS REASON FOR SUBMISSION (Check at least o Initial submission Engineering Change(s) Tooling: Transfer, Replacement, Refurb Correction of Discrepancy Tooling Inactive > than 1 year	O marking codes? ne) ishment, or additiona	1		C S C F C	Yes Change to Optiona Sub-Supplier or Ma Change in Part Pro Parts Produced at J Dither - please spec	No I Construction or M aterial Source Cha cessing Additional Location cify	NA /laterial nge
REQUESTED SUBMISSION LEVEL (Check on Level 1 - Warrant only (and for designat Level 2 - Warrant with product samples Level 3 - Warrant with product samples Level 5 - Warrant and other requiremen Level 5 - Warrant with product samples SUBMISSION RESULTS The results for dimensional measurer Mold / Cavity / Production Process DECLARATION I affirm that the samples represented by this warrant Process Manual 4th Edition Requirements. I further I also certify that documented evidence of such components	e) ed appearance items and limited supportin and complete suppor ts as defined by custo and complete suppor ment mate ts: Y t are representative of affirm that these samp pliance is on file and is	s, an Appearan Ig data submitt rting data subm omer. rting data revie erial and functio res N our parts, which oles were produ s available for r	ice Approval ed to custom nitted to cust ewed at supp onal tests o (If "No" h were made ced at the pro eview. I have	Report) subm her. omer. lier's manufac appear - Explanation by a process t oduction rate o e noted any der	itted to customer. turing location. ance criteria Required) hat meets all Produ f Production Rate viations from this do	statistical proce inction Part Approva is TE Proprietary eclaration below.	ss package
EXPLANATION/COMMENTS							
Is each Customer Tool properly tagged and num	bered?	۲: ۲	es	No	NA		
Organization Authorized Signature	Luis C	asas				Date	
Print Name	<u> </u>	Phone No.			Fax_		<u> </u>
Title		Email					
PPAP Warrant Disposition : App	FOR CUSTOM roved Reject	MER USE ONL	Y (IF APPLI Other	CABLE)			
Customer Signature					C)ate	
Print Name		c	ustomer Trad	cking Number	(optional)		

Section 18a

Bulk Material Requirements

Not Applicable