

Product Change Notification / SYST-02RVGR281

ח	2	ŧ	Δ	•
u	а	L	ㄷ	

03-Aug-2023

Product Category:

Memory

PCN Type:

Document Change

Notification Subject:

Data Sheet - SST39LF200A/400A/800A and SST39VF200A/400A/800A - 2-Mbit/4-Mbit/8-Mbit (x16) Multi-Purpose Flash

Affected CPNs:

SYST-02RVGR281_Affected_CPN_08032023.pdf SYST-02RVGR281 Affected CPN 08032023.csv

Notification Text:

SYST-02RVGR281

Microchip has released a new Datasheet for the SST39LF200A/400A/800A and SST39VF200A/400A/800A - 2-Mbit/4-Mbit/8-Mbit (x16) Multi-Purpose Flash of devices. If you are using one of these devices please read the document located at SST39LF200A/400A/800A and SST39VF200A/400A/800A - 2-Mbit/4-Mbit/8-Mbit (x16) Multi-Purpose Flash.

Notification Status: Final

Description of Change: Removed C1QE and M1QE packages

Impacts to Data Sheet: See above details.

Reason for Change: To Improve Productivity Change Implementation Status: Complete

Date Document Changes Effective: 03 Aug 2023

NOTE: Please be advised that this is a change to the document only the product has not been changed.

Markings to Distinguish Revised from Unrevised Devices:: N/A

Attachments: SST39LF200A/400A/800A and SST39VF200A/400A/800A - 2-Mbit/4-Mbit/8-Mbit (x16) Multi-Purpose Flash Please contact your local Microchip sales office with questions or concerns regarding this notification. **Terms and Conditions:** If you wish to receive Microchip PCNs via email please register for our PCN email service at our PCN home page select register then fill in the required fields. You will find instructions about registering for Microchips PCN email service in the PCN FAQ section. If you wish to change your PCN profile, including opt out, please go to the PCN home page select login and sign into your myMicrochip account. Select a profile option from the left navigation bar and make the applicable selections.

Affected Catalog Part Numbers (CPN)

SST39LF200A-55-4C-B3KE

SST39LF200A-55-4C-B3KE-T

SST39LF200A-55-4C-EKE

SST39LF200A-55-4C-EKE-T

SST39LF400A-55-4C-B3KE

SST39LF400A-55-4C-B3KE-T

SST39LF400A-55-4C-EKE

SST39LF400A-55-4C-EKE-T

SST39LF800A-55-4C-B3KE

SST39LF800A-55-4C-B3KE-T

SST39LF800A-55-4C-EKE

SST39VF200A-70-4C-B3KE

SST39VF200A-70-4C-B3KE-T

SST39VF200A-70-4C-EKE

SST39VF200A-70-4C-EKE-T

SST39VF200A-70-4C-MAQE

SST39VF200A-70-4C-MAQE-T

SST39VF200A-70-4I-B3KE

SST39VF200A-70-4I-B3KE-T

SST39VF200A-70-4I-EKE

SST39VF200A-70-4I-EKE-T

SST39VF400A-70-4C-B3KE

SST39VF400A-70-4C-B3KE-T

SST39VF400A-70-4C-EKE

SST39VF400A-70-4C-EKE-T

SST39VF400A-70-4C-MAQE

SST39VF400A-70-4C-MAQE-T

SST39VF400A-70-4I-B3KE

SST39VF400A-70-4I-B3KE-T

SST39VF400A-70-4I-EKE

SST39VF400A-70-4I-EKE-T

SST39VF400A-70-4I-MAQE

SST39VF400A-70-4I-MAQE-T

SST39VF800A-70-4C-B3KE

SST39VF800A-70-4C-B3KE-T

SST39VF800A-70-4C-EKE

SST39VF800A-70-4C-EKE-T

SST39VF800A-70-4C-MAQE

SST39VF800A-70-4C-MAQE-T

SST39VF800A-70-4I-B3KE

SST39VF800A-70-4I-B3KE-T

SST39VF800A-70-4I-EKE

SST39VF800A-70-4I-EKE-T

SST39VF800A-70-4I-MAQE

SST39VF800A-70-4I-MAQE-T

Date: Thursday, August 03, 2023

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

The SST39LF200A/400A/800A and SST39VF200A/400A/800A devices are 128-Kbit x16 / 256-Kbit x16 / 512-Kbit x16 CMOS Multi-Purpose Flash (MPF) manufactured with Microchip proprietary, high-performance CMOS SuperFlash technology. The split-gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39LF200A/400A/800A write (Program or Erase) with a 3.0V-3.6V powersupply. The SST39VF200A/400A/800A write (Program or Erase) with a 2.7V-3.6V power supply. These devices conform to JEDEC standard pinouts for x16 memories.

Features

- Organized as 128-Kbit x16 / 256-Kbit x16 / 512-Kbit x16
- Single Voltage Read and Write Operations
 - 3.0V-3.6V for SST39LF200A/400A/800A
 - 2.7V-3.6V for SST39VF200A/400A/800A
- Superior Reliability
 - Endurance: 100,000 Cycles (typical)
 - Greater than 100 years Data Retention
- Low Power Consumption (typical values at 14 MHz)
 - Active Current: 9 mA (typical)
 - Standby Current: 3 µA (typical)
- Sector-Erase Capability
 - Uniform 2 KWord sectors
- Block-Erase Capability
 - Uniform 32 KWord blocks
- Fast Read Access Time
 - 55 ns for SST39LF200A/400A/800A
 - 70 ns for SST39VF200A/400A/800A
- Latched Address and Data

- Fast Erase and Word-Program
 - Sector-Erase Time: 18 ms (typical)Block-Erase Time: 18 ms (typical)

 - Chip-Erase Time: 70 ms (typical)
 Word-Program Time: 14 µs (typical)

 - Chip Rewrite Time:

 - 2 seconds (typical) for SST39LF/VF200A 4 seconds (typical) for SST39LF/VF400A 8 seconds (typical) for SST39LF/VF800A
- Automatic Write Timing
 - Internal V_{PP} Generation
- End-of-Write Detection
 - Toggle Bit
 - Data# Polling
- CMOS I/O Compatibility
- JEDEC Standard
 - Flash EEPROM Pinouts and command sets
- Packages Available
 - 48-lead TSOP (12 mm x 20 mm)48-ball TFBGA (6 mm x 8 mm)

 - 48-ball WFBGA (4 mm x 6 mm)
- All non-Pb (lead-free) devices are RoHS compliant

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Product Description

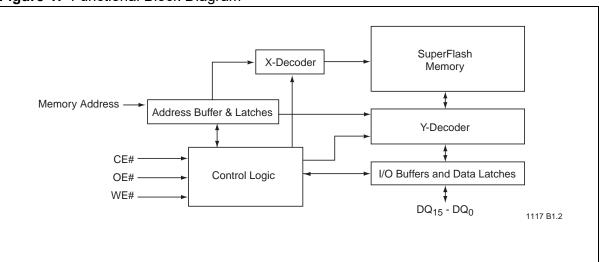
The SST39LF200A/400A/800A and SST39VF200A/400A/800A devices are 128-Kbit x16 / 256-Kbit x16 / 512-Kbit x16 CMOS Multi-Purpose Flash (MPF) manufactured with Microchip proprietary, high-performance CMOS SuperFlash technology. The split-gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST39LF200A/400A/800A write (Program or Erase) with a 3.0V-3.6V power supply. The SST39VF200A/400A/800A write (Program or Erase) with a 2.7V-3.6V power supply. These devices conform to JEDEC standard pinouts for x16 memories.

Featuring high-performance Word-Program, the SST39LF200A/400A/800A and SST39VF200A/400A/800A devices provide a typical Word-Program time of 14 µsec. The devices use Toggle Bit or Data# Polling to detect the completion of the Program or Erase operation. To protect against inadvertent write, they have on-chip hardware and software data protection schemes. Designed, manufactured and tested for a wide spectrum of applications, these devices are offered with a guaranteed typical endurance of 100,000 cycles. Data retention is rated at greater than 100 years.

The SST39LF200A/400A/800A and SST39VF200A/400A/800A devices are suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, they significantly improve performance and reliability while lowering power consumption. They inherently use less energy during Erase and Program than alternative Flash technologies. When programming a Flash device, the total energy consumed is a function of the applied voltage, current and time of application. For any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time. Therefore, the total energy consumed during any Erase or Program operation is less than alternative Flash technologies. These devices also improve flexibility while lowering the cost for program, data and configuration storage applications.

The SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore, the system software or hardware does not have to be modified or de-rated as is necessary with alternative Flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.

To meet surface mount requirements, the SST39LF200A/400A/800A and SST39VF200A/400A/800A are offered in 48-lead TSOP packages, 48-ball TFBGA packages, and 48-ball WFBGA packages. See Figures 2, 3 and 4 for pin assignments.



SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

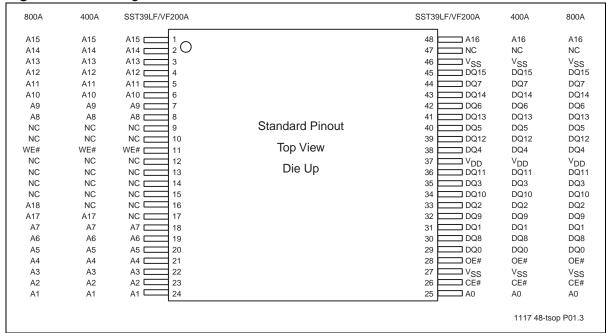
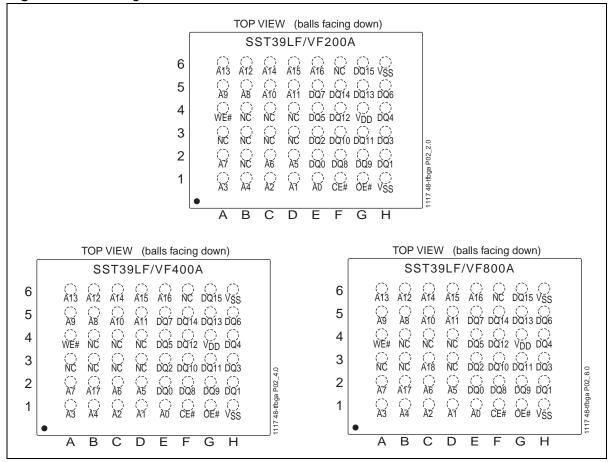
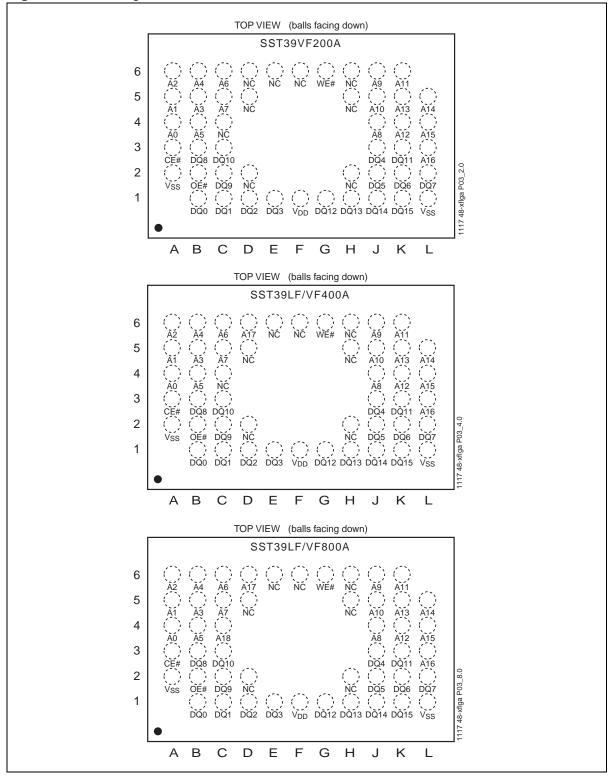

Block Diagram

Figure 1: Functional Block Diagram

Pin Assignments


Figure 2: Pin Assignments for 48-Lead TSOP

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A


Figure 3: Pin Assignments for 48-Ball TFBGA

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 4: Pin Assignments for 48-Ball WFBGA

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Table 1: Pin Description

Symbol	Pin Name	Functions				
		To provide memory addresses.				
$A_{MS}^1-A_0$	Address Inputs	During Sector-Erase A _{MS} -A ₁₁ address lines will select the sector.				
		During Block-Erase A _{MS} -A ₁₅ addres	ss lines will select the block.			
DQ ₁₅ -DQ ₀	Data Input/output	To output data during Read cycles and receive input data during Write cycles. Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.				
CE#	Chip Enable	To activate the device when CE# is low.				
OE#	Output Enable	To gate the data output buffers.				
WE#	Write Enable	To control the Write operations.				
V_{DD}	Power Supply	To provide power supply voltage:	3.0V-3.6V for SST39LF200A/400A/800A			
	Power Supply		2.7V-3.6V for SST39VF200A/400A/800A			
V _{SS}	Ground					
NC	No Connection	Unconnected pins.				

T1.2 25001

 $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A

^{1.} A_{MS} = Most significant address

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Device Operation

Commands are used to initiate the memory operation functions of the device. Commands are written to the device using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.

Read

The Read operation of the SST39LF200A/400A/800A and SST39VF200A/400A/800A is controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 5).

Word-Program Operation

The SST39LF200A/400A/800A and SST39VF200A/400A/800A are programmed on a word-by-word basis. Before programming, the sector where the word exists must be fully erased. The Program operation is accomplished in three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load word address and word data. During the Word-Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed within 20 µs. See Figures 6 and 7 for WE# and CE# controlled Program operation timing diagrams and Figure 18 for a flowchart. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the client is free to perform additional tasks. Any commands issued during the internal Program operation are ignored.

Sector/Block-Erase Operation

The Sector- (or Block-) Erase operation allows the system to erase the device on a sector-by-sector (or block-by-block) basis. The SST39LF200A/400A/800A and SST39VF200A/400A/800A offer both Sector-Erase and Block-Erase modes. The sector architecture is based on uniform sector size of 2 KWord. The Block-Erase mode is based on uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (50H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. The End-of-Erase operation can be determined using either Data# Polling or Toggle Bit methods. See Figures 11 and 12 for timing waveforms. Any commands issued during the Sector- or Block-Erase operation are ignored.

Chip-Erase Operation

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide a Chip-Erase operation, which allows the user to erase the entire memory array to the '1' state. This is useful when the entire device must be quickly erased.

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

The Chip-Erase operation is initiated by executing a six-byte command sequence with Chip-Erase command (10H) at address 5555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid read is Toggle Bit or Data# Polling. See Table 4 for the command sequence, Figure 10 for the timing diagram and Figure 21 for a flowchart. Any commands issued during the Chip-Erase operation are ignored.

Write Operation Status Detection

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide two software means to detect the completion of a write (Program or Erase) cycle to optimize the system write cycle time. The software detection includes two status bits: Data# Polling (DQ $_7$) and Toggle Bit (DQ $_6$). The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation.

The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Data# Polling or Toggle Bit read may be simultaneous with the completion of the write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ_7 or DQ_6 . To prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the write cycle, otherwise the rejection is valid.

Data# Polling (DQ₇)

When the SST39LF200A/400A/800A and SST39VF200A/400A/800A devices are in the internal Program operation, any attempt to read DQ_7 will produce the complement of the true data. Once the Program operation is completed, DQ_7 will produce true data. Note that even though DQ_7 may have valid data immediately following the completion of an internal Write operation, the remaining data outputs may still be invalid: valid data on the entire data bus will appear in subsequent successive Read cycles after an interval of 1 μ s. During internal Erase operation, any attempt to read DQ_7 will produce a '0'. Once the internal Erase operation is completed, DQ_7 will produce a '1'. Data# Polling is valid after the rising edge of the fourth WE# (or CE#) pulse for Program operation. For Sector-, Block-or Chip-Erase, Data# Polling is valid after the rising edge of the sixth WE# (or CE#) pulse. See Figure 8 for Data# Polling timing diagram and Figure 19 for a flowchart.

Toggle Bit (DQ₆)

During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating 1s and 0s, i.e., toggling between '1' and '0'. When the internal Program or Erase operation is completed, the DQ_6 bit will stop toggling. The device is then ready for the next operation. The Toggle Bit is valid after the rising edge of the fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Toggle Bit is valid after the rising edge of the sixth WE# (or CE#) pulse. See Figure 9 for the Toggle Bit timing diagram and Figure 19 for a flowchart.

Data Protection

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide both hardware and software features to protect nonvolatile data from inadvertent writes.

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Hardware Data Protection

Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a write cycle.

 \underline{V}_{DD} Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.5V.

<u>Write Inhibit Mode</u>: Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

Software Data Protection (SDP)

The SST39LF200A/400A/800A and SST39VF200A/400A/800A provide the JEDEC approved Software Data Protection scheme for all data alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of six-byte sequence. These devices are shipped with the Software Data Protection permanently enabled. See Table 4 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to Read mode within TRC. The contents of DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value, during any SDP command sequence.

Common Flash Memory Interface (CFI)

The SST39LF200A/400A/800A and SST39VF200A/400A/800A devices also contain the CFI information to describe the characteristics of the device. To enter the CFI Query mode, the system must write three-byte sequence, same as Software ID Entry command with 98H (CFI Query command) to address 5555H in the last byte sequence. Once the device enters CFI Query mode, the system can read CFI data at the addresses given in Tables 5 through 9. The system must write the CFI Exit command to return to Read mode from the CFI Query mode.

Product Identification

Product Identification mode identifies the devices as the SST39LF/VF200A, SST39LF/VF400A and SST39LF/VF800A and the manufacturer as Microchip. This mode may be accessed by software operations. Users may use the Software Product Identification operation to identify the part (i.e., using the device ID) when using multiple manufacturers in the same socket. For details, see Table 4 for software operation, Figure 13 for the Software ID Entry and Read timing diagram and Figure 20 for the Software ID Entry command sequence flowchart.

Table 2: Product Identification

	Address	Data
Manufacturer's ID	0000H	00BFH
Device ID		
SST39LF/VF200A	0001H	2789H
SST39LF/VF400A	0001H	2780H
SST39LF/VF800A	0001H	2781H

T2.3 25001

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Product Identification Mode Exit/CFI Mode Exit

To return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/CFI Exit command is ignored during an internal Program or Erase operation. See Table 4 for software command codes, Figure 15 for timing waveform and Figure 20 for a flowchart.

Operations

Table 3: Operation Modes Selection

Mode	CE#	OE#	WE#	DQ	Address
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}	A _{IN}
Program	V _{IL}	V _{IH}	V _{IL}	D _{IN}	A _{IN}
Erase	V _{IL}	V _{IH}	V _{IL}	X ¹	Sector or Block address, XXH for Chip-Erase
Standby	V _{IH}	Х	Х	High-Z	X
Write Inhibit	Х	V _{IL}	Х	High-Z/ D _{OUT}	X
	Х	Х	V _{IH}	High-Z/ D _{OUT}	Х
Product Identification	_	_	_		
Software Mode	V _{IL}	V _{IL}	V _{IH}		See Table 4

^{1.} X can be V_{IL} or V_{IH} , but no other value.

T3.4 25001

Table 4: Software Command Sequence

Command Sequence	1st I Write		2nd Write		3rd Write		4th Write		5th E Write		6th I Write	
	Addr ⁽¹⁾	Data ⁽²⁾	Addr ⁽¹⁾	Data ⁽²⁾								
Word-Program	5555H	AAH	2AAAH	55H	5555H	A0H	WA ⁽³⁾	Data	_	_	_	_
Sector-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	SA _X ⁽⁴⁾	30H
Block-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	$BA_X^{(4)}$	50H
Chip-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	5555H	10H
Software ID Entry ^{(5),(6)}	5555H	AAH	2AAAH	55H	5555H	90H	_	_	_	_	_	_
CFI Query Entry ⁽⁵⁾	5555H	AAH	2AAAH	55H	5555H	98H	_	_	_	_	_	_
Software ID Exit ⁽⁷⁾ / CFI Exit	XXH	F0H	_	_	_	_	_		_	_	_	_
Software ID Exit ⁽⁷⁾ / CFI Exit	5555H	AAH	2AAAH	55H	5555H	F0H	_		_		_	_

T4.3 25001

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

- Address format A₁₄-A₀ (Hex), Addresses A_{MS}-A₁₅ can be V_{IL} or V_{IH}, but no other value, for the Command sequence. A_{MS} = Most significant address
 - $A_{MS} = A_{16}$ for SST39LF/VF200A, A_{17} for SST39LF/VF400A and A_{18} for SST39LF/VF800A
- 2. DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value, for the Command sequence
- 3. WA = Program word address
- SA_X for Sector-Erase; uses A_{MS}-A₁₁ address lines BA_X for Block-Erase; uses A_{MS}-A₁₅ address lines
- 5. The device does not remain in Software Product ID mode if powered down
- 6. With A_{MS} - A_1 = 0; Manufacturer's ID = 00BFH, is read with A_0 = 0 SST39LF/VF200A Device ID = 2789H, is read with A_0 = 1 SST39LF/VF400A Device ID = 2780H, is read with A_0 = 1 SST39LF/VF800A Device ID = 2781H, is read with A_0 = 1
- 7. Both Software ID Exit operations are equivalent

Table 5: CFI Query Identification String⁽¹⁾ for SST39LF200A/400A/800A and SST39VF200A/400A/800A

Address	Data	Data
10H	0051H	Query Unique ASCII string "QRY"
11H	0052H	
12H	0059H	
13H	0001H	Primary OEM command set
14H	0007H	
15H	H0000	Address for Primary Extended Table
16H	0000H	
17H	0000H	Alternate OEM command set (00H = none exists)
18H	0000H	
19H	0000H	Address for Alternate OEM extended Table (00H = none exits)
1AH	0000H	

^{1.} Refer to CFI publication 100 for more details.

T5.0 25001

Table 6: System Interface Information for SST39LF200A/400A/800A and SST39VF200A/400A/800A

Address	Data	Data
1BH	0027H ⁽¹⁾	V _{DD} Min (Program/Erase)
	0030H ⁽¹⁾	DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts
1CH	0036H	V _{DD} Max (Program/Erase) DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts
1DH	0000H	V _{PP} min (00H = no V _{PP} pin)
1EH	0000H	V_{PP} max (00H = no V_{PP} pin)
1FH	0004H	Typical time out for Word-Program $2^N \mu s$ ($2^4 = 16 \mu s$)
20H	0000H	Typical time out for min size buffer program 2 ^N µs (00H = not supported)
21H	0004H	Typical time out for individual Sector/Block-Erase 2 ^N ms (2 ⁴ = 16 ms)
22H	0006H	Typical time out for Chip-Erase 2 ^N ms (2 ⁶ = 64 ms)
23H	0001H	Maximum time out for Word-Program 2^N times typical ($2^1 \times 2^4 = 32 \mu s$)
24H	0000H	Maximum time out for buffer program 2 ^N times typical
25H	0001H	Maximum time out for individual Sector/Block-Erase 2 ^N times typical (2 ¹ x 2 ⁴ = 32 ms)
26H	0001H	Maximum time out for Chip-Erase 2 ^N times typical (2 ¹ x 2 ⁶ = 128 ms)

1. 0030H for SST39LF200A/400A/800A and 0027H for SST39VF200A/400A/800A

T6.2 25001

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Table 7: Device Geometry Information for SST39LF/VF200A

Address	Data	Data
27H	0012H	Device size = 2 ^N Byte (12H = 18; 2 ¹⁸ = 256 KByte)
28H	0001H	Flash Device Interface description; 0001H = x16-only asynchronous interface
29H	0000H	
2AH	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)
2BH	_	
2CH	0002H	Number of Erase Sector/Block sizes supported by device
2DH	003FH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)
2EH	H0000	y = 63 + 1 = 64 sectors (003FH = 63)
2FH	0010H	
30H	H0000	z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)
31H	0003H	Block Information (y + 1 = Number of blocks; z x 256B = block size)
32H	H0000	y = 3 + 1 = 4 blocks (0003H = 3)
33H	0000H	
34H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)

T7.2 25001

Table 8: Device Geometry Information for SST39LF/VF400A

Address	Data	Data
27H	0013H	Device size = 2 ^N Byte (13H = 19; 2 ¹⁹ = 512 KByte)
28H	0001H	Flash Device Interface description; 0001H = x16-only asynchronous interface
29H	0000H	
2AH	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)
2BH	0000H	
2CH	0002H	Number of Erase Sector/Block sizes supported by device
2DH	007FH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)
2EH	0000H	y = 127 + 1 = 128 sectors (007FH = 127)
2FH	0010H	
30H	0000H	z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)
31H	0007H	Block Information (y + 1 = Number of blocks; z x 256B = block size)
32H	0000H	y = 7 + 1 = 8 blocks (0007H = 7)
33H	0000H	
34H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)

T8.1 25001

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Table 9: Device Geometry Information for SST39LF/VF800A

Address	Data	Data
27H	0014H	Device size = 2 ^N Bytes (14H = 20; 2 ²⁰ = 1 MByte)
28H	0001H	Flash Device Interface description; 0001H = x16-only asynchronous interface
29H	0000H	
2AH	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)
2BH	0000H	
2CH	0002H	Number of Erase Sector/Block sizes supported by device
2DH	00FFH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)
2EH	0000H	y = 255 + 1 = 256 sectors (00FFH = 255)
2FH	0010H	
30H	0000H	z = 16 x 256 Bytes = 4 KByte/sector (0010H = 16)
31H	000FH	Block Information (y + 1 = Number of blocks; z x 256B = block size)
32H	0000H	y = 15 + 1 = 16 blocks (000FH = 15)
33H	0000H	
34H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)

T9.0 25001

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	2.0V to V _{DD} +2.0V
Voltage on A ₉ Pin to Ground Potential	0.5V to 13.2V
Package Power Dissipation Capability (T _A = 25°C)	1.0W
Surface Mount Solder Reflow Temperature ⁽¹⁾	260°C for 10 seconds
Output Short Circuit Current ⁽²⁾	50 mA

Excluding certain with-Pb 32-PLCC units, all packages are 260°C capable in both non-Pb and with-Pb solder versions.
 Certain with-Pb 32-PLCC package types are capable of 240°C for 10 seconds; please consult the factory for the latest information.

Operating Range: SST39LF200A/400A/800A

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	3.0V-3.6V

T9.1 25001

Operating Range: SST39VF200A/400A/800A

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	2.7V-3.6V
Industrial	-40°C to +85°C	2.7V-3.6V

T9.1 25001

Table 10: AC Conditions of Test⁽¹⁾

Input Rise/Fall Time	Output Load SST39LF200A/400A/800A	Output Load SST39VF200A/400A/800A
5ns	C _L = 30 pF	C _L = 100 pF

T10.1 25001

1. See Figures 16 and 17.

^{2.} Outputs shorted for no more than one second. No more than one output shorted at a time.

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Table 11: DC Operating Characteristics $-V_{DD} = 3.0-3.6V$ for SST39LF200A/400A/800A and 2.7-3.6V for SST39VF200A/400A/800A⁽¹⁾

		Limits			
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{DD}	Power Supply Current				Address input=V _{ILT} /V _{IHT} , at f=1/T _{RC} Min, V _{DD} =V _{DD} Max
	Read ⁽²⁾	_	30	mA	CE#=V _{IL} , OE#=WE#=V _{IH} , all I/Os open
	Program and Erase	_	30	mA	CE#=WE#=V _{IL} , OE#=V _{IH}
I _{SB}	Standby V _{DD} Current	_	20	μA	CE#=V _{IHC} , V _{DD} =V _{DD} Max
ILI	Input Leakage Current	_	1	μA	V _{IN} =GND to V _{DD} , V _{DD} =V _{DD} Max
I _{LO}	Output Leakage Current	_	10	μA	V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max
V _{IL}	Input Low Voltage	_	0.8	_	V _{DD} =V _{DD} Min
V _{IH}	Input High Voltage	$0.7V_{DD}$	_	V	V _{DD} =V _{DD} Max
V _{IHC}	Input High Voltage (CMOS)	V _{DD} -0.3	_	V	V _{DD} =V _{DD} Max
V _{OL}	Output Low Voltage	_	0.2	V	I _{OL} =100 μA, V _{DD} =V _{DD} Min
V _{OH}	Output High Voltage	V _{DD} -0.2	_	V	I _{OH} =-100 μA, V _{DD} =V _{DD} Min

T11.7 25001

Table 12: Recommended System Power-up Timings

Symbol	Parameter	Minimum	Units
T _{PU-READ} (1)	Power-up to Read Operation	100	μs
T _{PU-WRITE} ⁽¹⁾	Power-up to Program/Erase Operation	100	μs

T12.0 25001

Table 13: Capacitance (T_A = 25°C, f=1 Mhz, other pins open)

Paramete	r Description	Test Condition	Maximum
C _{I/O} ⁽¹⁾	I/O Pin Capacitance	V _{I/O} = 0V	12 pF
C _{IN} ⁽¹⁾	Input Capacitance	V _{IN} = 0V	6 pF

T13.0 25001

Table 14: Reliability Characteristics

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END} ^{(1),(2)}	Endurance	10,000	Cycles	JEDEC Standard A117
$T_{DR}^{(1)}$	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} ⁽¹⁾	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78

T14.2 25001

Typical conditions for the Active Current shown on page 1 are average values at 25°C (room temperature), and V_{DD} = 3V for VF devices. Not 100% tested.

^{2.} Values are for 70 ns conditions. See the Multi-Purpose Flash Power Rating application note for further information.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

N_{END} endurance rating is qualified as a 10,000 cycle minimum for the whole device. A sector- or block-level rating would result in a higher minimum specification.

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

AC Characteristics

Table 15: Read Cycle Timing Parameters $V_{DD} = 3.0-3.6V$

Symbol	Parameter	SST39LF200	Units	
		Min	Max	
T _{RC}	Read Cycle Time	55	_	ns
T _{CE}	Chip Enable Access Time	_	55	ns
T _{AA}	Address Access Time	_	55	ns
T _{OE}	Output Enable Access Time	_	30	ns
T _{CLZ} ⁽¹⁾	CE# Low to Active Output	0	_	ns
T _{OLZ} ⁽¹⁾	OE# Low to Active Output	0	_	ns
T _{CHZ} ⁽¹⁾	CE# High to High-Z Output	_	15	ns
T _{OHZ} ⁽¹⁾	OE# High to High-Z Output	_	15	ns
T _{OH} ⁽¹⁾	Output Hold from Address Change	0	_	ns

T15.7 25001

Table 16: Read Cycle Timing Parameters $V_{DD} = 2.7-3.6V$

Symbol	Parameter	SST39VF200/	Units	
		Min	Max	
T _{RC}	Read Cycle Time	70	_	ns
T _{CE}	Chip Enable Access Time	_	70	ns
T _{AA}	Address Access Time	_	70	ns
T _{OE}	Output Enable Access Time	_	35	ns
T _{CLZ} ⁽¹⁾	CE# Low to Active Output	0	_	ns
T _{OLZ} ⁽¹⁾	OE# Low to Active Output	0	_	ns
T _{CHZ} ⁽¹⁾	CE# High-to-High-Z Output	_	20	ns
T _{OHZ} ⁽¹⁾	OE# High-to-High-Z Output	_	20	ns
T _{OH} ⁽¹⁾	Output Hold from Address Change	0	_	ns

T16.7 25001

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Table 17: Program/Erase Cycle Timing Parameters

Symbol	Parameter	Min	Max	Units
T _{BP}	Word-Program Time	_	20	μs
T _{AS}	Address Setup Time	0	_	ns
T _{AH}	Address Hold Time	30	_	ns
T _{CS}	WE# and CE# Setup Time	0	_	ns
T _{CH}	WE# and CE# Hold Time	0	_	ns
T _{OES}	OE# High Setup Time	0	_	ns
T _{OEH}	OE# High Hold Time	10	_	ns
T _{CP}	CE# Pulse Width	40	_	ns
T _{WP}	WE# Pulse Width	40	_	ns
T _{WPH} ⁽¹⁾	WE# Pulse Width High	30	_	ns
T _{CPH} ⁽¹⁾	CE# Pulse Width High	30	_	ns
T _{DS}	Data Setup Time	30	_	ns
T _{DH} ⁽¹⁾	Data Hold Time	0	_	ns
T _{IDA} ⁽¹⁾	Software ID Access and Exit Time	150	_	ns
T _{SE}	Sector-Erase	_	25	ms
T _{BE}	Block-Erase	_	25	ms
T _{SCE}	Chip-Erase	_	100	ms

T17.0 25001

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 5: Read Cycle Timing Diagram

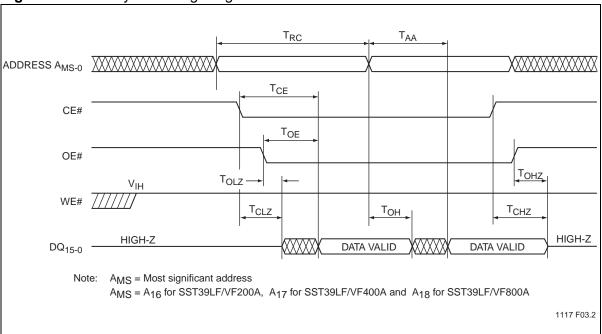
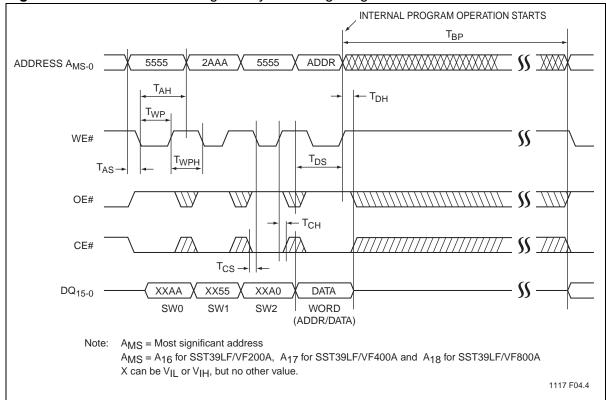



Figure 6: WE# Controlled Program Cycle Timing Diagram

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 7: CE# Controlled Program Cycle Timing Diagram

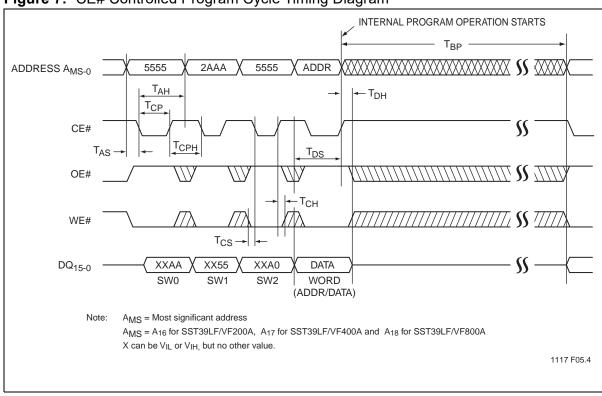
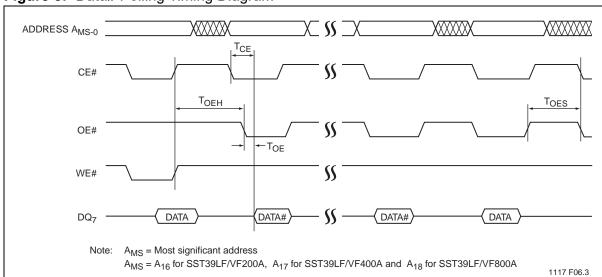



Figure 8: Data# Polling Timing Diagram

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 9: Toggle Bit Timing Diagram

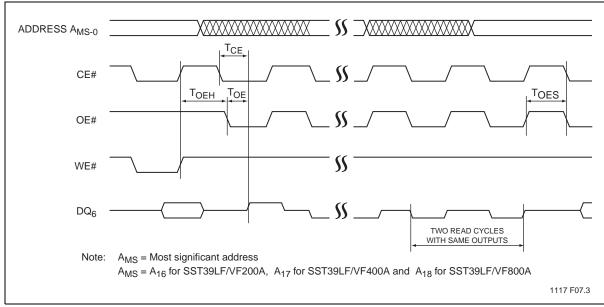
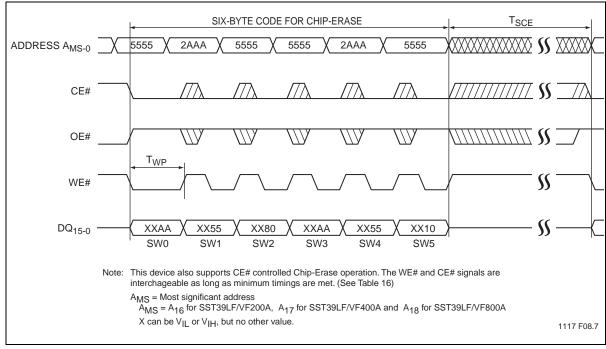



Figure 10:WE# Controlled Chip-Erase Timing Diagram

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 11: WE# Controlled Block-Erase Timing Diagram

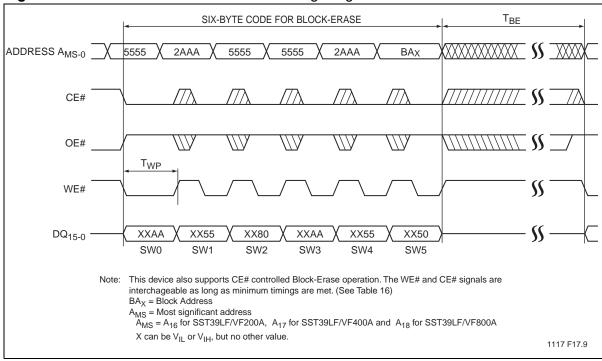
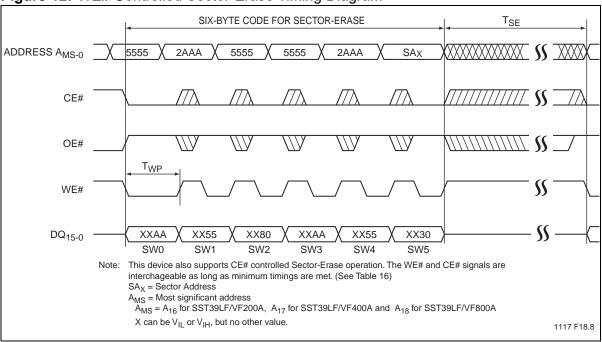



Figure 12: WE# Controlled Sector-Erase Timing Diagram

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 13: Software ID Entry and Read

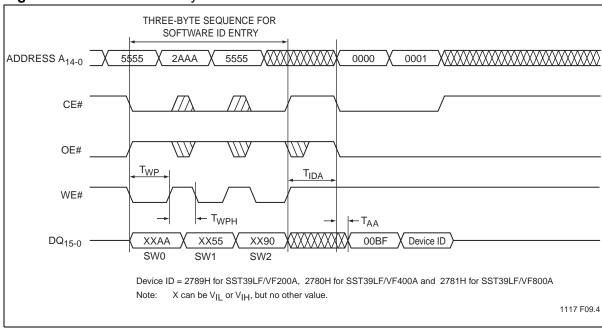
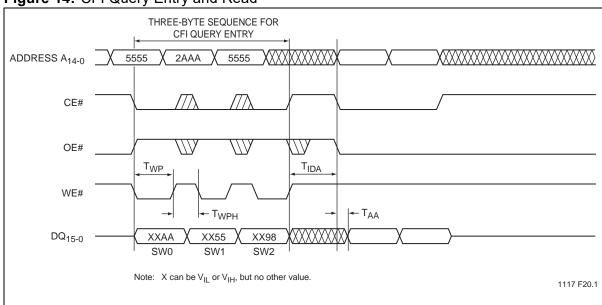



Figure 14: CFI Query Entry and Read

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Figure 15: Software ID Exit/CFI Exit

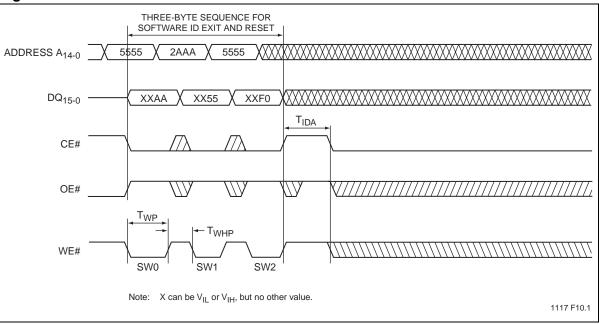
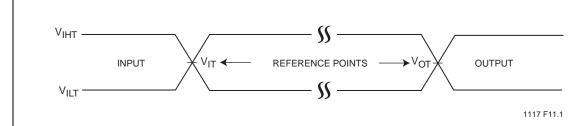
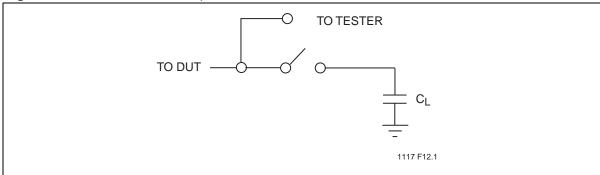
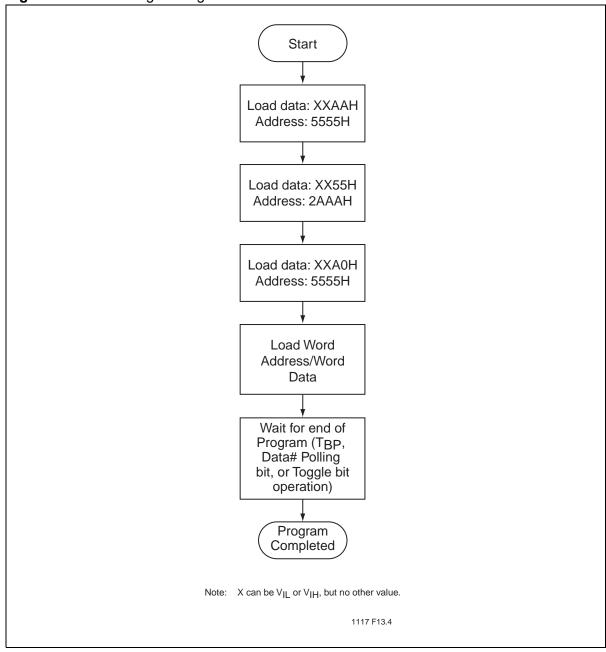



Figure 16: AC Input/Output Reference Waveforms

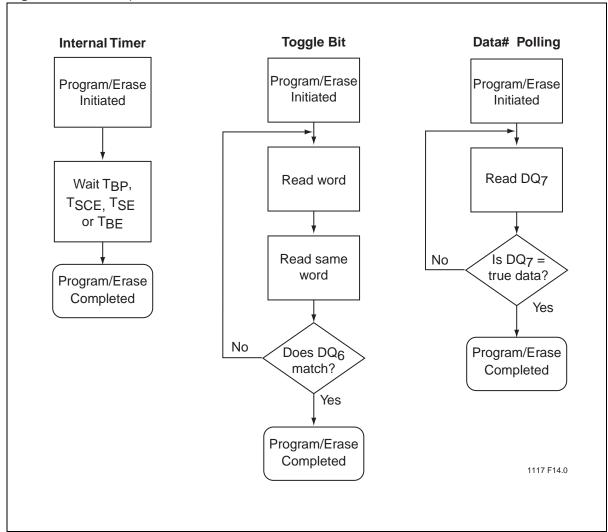

AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic '1' and V_{ILT} (0.1 V_{DD}) for a logic '0'. Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times (10% \leftrightarrow 90%) are <5 ns.

Note: V_{IT} - V_{INPUT} Test
V_{OT} - V_{OUTPUT} Test
V_{IHT} - V_{INPUT} HIGH Test
V_{ILT} - V_{INPUT} LOW Test

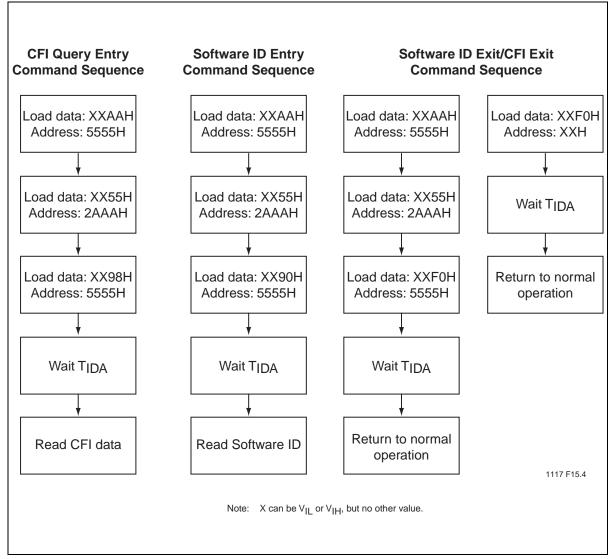
SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A


Figure 17: A Test Load Example

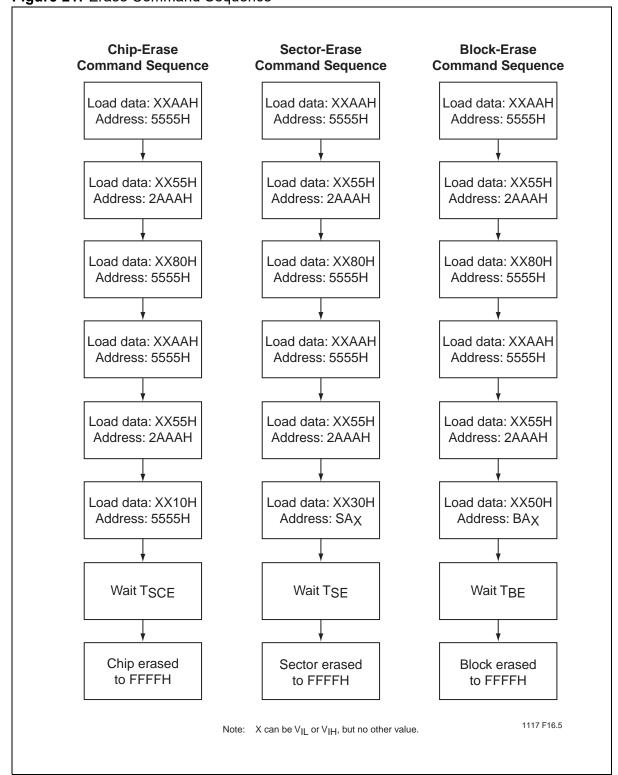
SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A


Figure 18: Word-Program Algorithm

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

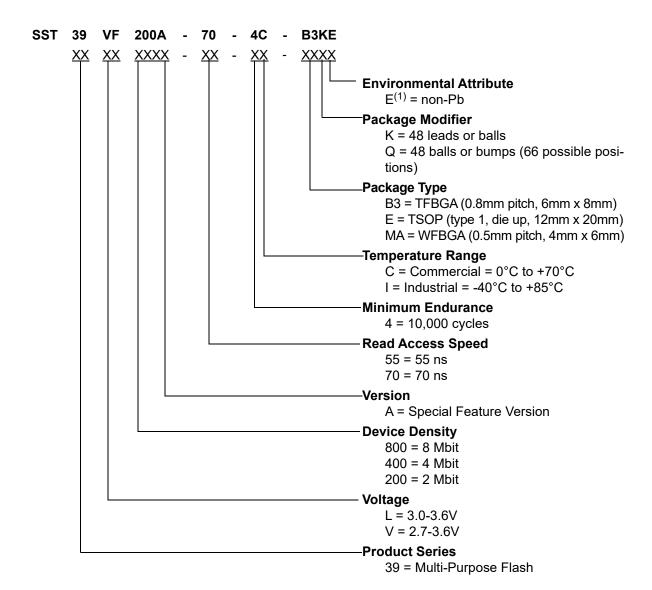

Figure 19: Wait Options

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A


Figure 20: Software ID/CFI Command Flowcharts

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Figure 21: Erase Command Sequence



SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Product Ordering Information

Environmental suffix "E" denotes non-Pb solder. Non-Pb solder devices are "RoHS Compliant".

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Valid combinations for SST39LF200A

Valid combinations for SST39VF200A

SST39VF200A-70-4C-EKE SST39VF200A-70-4C-B3KE SST39VF200A-70-4C-MAQE SST39VF200A-70-4I-EKE SST39VF200A-70-4I-B3KE SST39VF200A-70-4I-MAQE

Valid combinations for SST39LF400A

SST39LF400A-55-4C-EKE SST39LF400A-55-4C-B3KE SST39LF400A-55-4C-MAQE

Valid combinations for SST39VF400A

SST39VF400A-70-4C-EKE SST39VF400A-70-4C-B3KE SST39VF400A-70-4C-MAQE SST39VF400A-70-4I-EKE SST39VF400A-70-4I-B3KE SST39VF400A-70-4I-MAQE

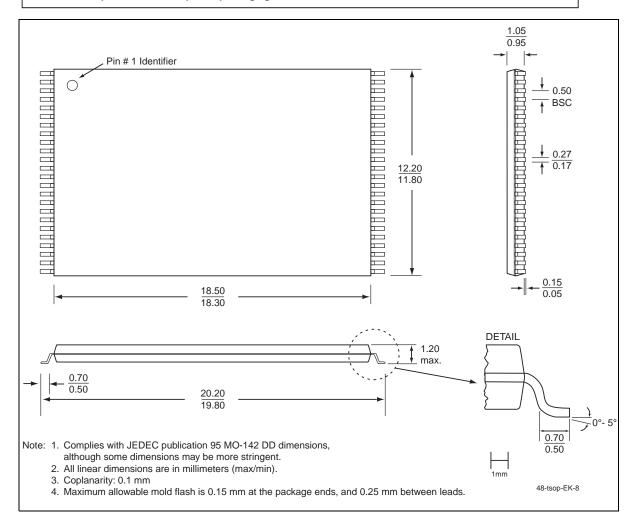
Valid combinations for SST39LF800A

SST39LF800A-55-4C-EKE SST39LF800A-55-4C-B3KE SST39LF800A-55-4C-MAQE

Valid combinations for SST39VF800A

SST39VF800A-70-4C-EKE SST39VF800A-70-4C-B3KE SST39VF800A-70-4C-MAQE SST39VF800A-70-4I-EKE SST39VF800A-70-4I-B3KE SST39VF800A-70-4I-MAQE

Note: Valid combinations are those products in mass production or will be in mass production. Consult your Microchip sales representative to confirm availability of valid combinations and to determine availability of new combinations.

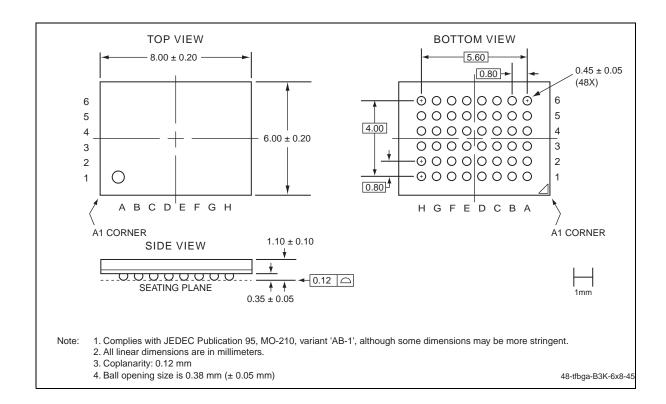

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Packaging Diagrams

Figure 22: 48-Lead Thin Small Outline Package (TSOP) 12 mm x 20 mm SST Package Code: EK

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

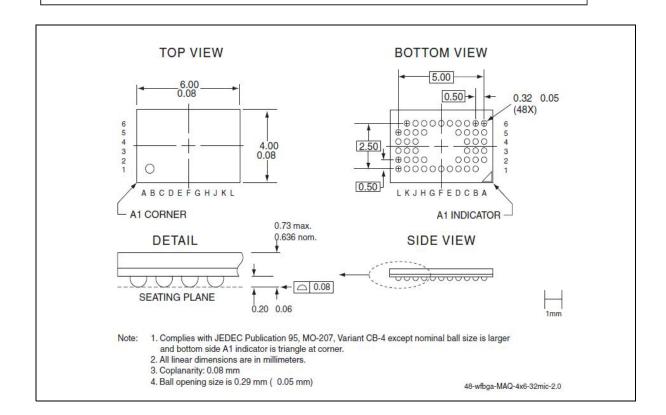


SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Figure 23: 48-Ball Thin-Profile, Fine-pitch Ball Grid Array (TFBGA) 6 mm x 8 mm SST Package Code: B3K

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Data Sheet

Figure 24: 48-Ball Very-Very-Thin-Profile, Fine-Pitch Ball Grid Array (WFBGA) 4mm x 6mm SST Package Code: MAQ

Note: For the most current package drawings, please see the Microchip Packaging Specification located

at http://www.microchip.com/packaging

SST39LF200A / SST39LF400A / SST39LF800A SST39VF200A / SST39VF400A / SST39VF800A

Table 18: Revision History

Revision	Description	Date
04	• 2002 Data Book	May 2002
05	Added footnotes for MPF power usage and Typical conditions to Table 11	Mar 2003
	 Clarified the Test Conditions for Power Supply Current and Read parameters in Table 11 	
	Part number changes	
	 New Micro-Package part numbers added for SST39VF400A and SST39VF800A 	
06	New Micro-Package part numbers added for SST39VF400A/800A	Oct 2003
07	• 2004 Data Book	Nov 2003
	 Updated the B3K, M1Q and C1Q package diagrams 	
	Added non-Pb MPNs and removed footnote	
08	Added M1Q/M1QE MPNs for the SSTVF200A device	Apr 2005
	 Removed 90ns MPNs and footnote for the SSTVFx00A devices 	
	Added RoHS compliance information	
	 Clarified the solder temperature profile under Absolute Maximum Stress Ratings 	
09	 Removed valid combinations SST39LF400A-45-4C-EK, SST39LF400A-45-4C-B3K, SST39LF400A-45-4C-EKE and SST39LF400A-45-4C-B3KE due to EOL 	Feb 2007
	Applied new format styles	
10	Add Y1QE package	Aug 2007
	Removed all pb parts	
11	EOL of all Y1QE parts. Replacement parts are M1QE parts in this document.	Dec 2009
12	EOL of SST39LF200A-45-4C-EKE and SST39LF200A-45-4C-B3KE. See S71117(12). Replacement parts are SST39LF200A-55-4C-EKE and SST39LF200A-55-4C-B3KE found in this document.	Apr 2010
13	Added MAQE package information	Nov 2010
Α	Applied new document format	Mar 2011
	Released document under letter revision system	
	Updated Spec number from S71117 to DS25001	
	 Updated T_{IDA} value in Table 17 from max 150 ns to min 150 ns 	
В	Removed C1QE and M1QE packages	Aug 2023

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, Bes Time, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2002-2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-2636-7

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820