

# **ADF4368**

# Microwave Wideband Synthesizer with Integrated VCO

## **FEATURES**

- ▶ Output frequency range: 800 MHz to 12.8 GHz
- Jitter < 30 fs<sub>RMS</sub> f<sub>OUT</sub> = 9.001 GHz, f<sub>REF</sub> = f<sub>PFD</sub> = 250 MHz, fractional mode
- ▶ Wideband phase noise floor: -160 dBc/Hz at 12.8 GHz
- PLL specifications
  - Normalized in-band phase noise floor
    - ► -239 dBc/Hz: integer, -237 dBc/Hz: fractional mode
  - Normalized 1/f phase noise floor
  - ► -287 dBc/Hz: normalized to 1 Hz
  - ▶ -147 dBc/Hz: normalized to 1 GHz at 10 kHz
  - ▶ 625 MHz phase detector frequency integer mode
  - 250 MHz phase detector frequency fractional mode
  - 25-bit fixed, 49-bit combined fractional modulus
  - 4 GHz reference input frequency
  - ► Typical -95 dBc PFD spurs
- Reference to output delay specifications
  - ▶ Temperature coefficient: 0.06 ps/°C
  - Adjustment step size: <1 ps</p>
- Multichip output phase alignment
  - ► Through SYNC pin or by EZSync method
- ▶ 3.3 V and 5 V power supplies
- ► ADIsimPLL<sup>™</sup> loop filter design tool support
- Available in 48-lead, 7 mm × 7 mm LGA package
- -40°C to +125°C operating junction temperature

## **APPLICATIONS**

- Wireless infrastructure (MC-GSM, 5G)
- Test and measurement
- Aerospace and defense

# **GENERAL DESCRIPTION**

The ADF4368 is a high performance, ultra-low jitter, integer-N and fractional-N phase-locked loop (PLL) with integrated VCO ideally suited for frequency conversion applications.

The high performance PLL has a figure of merit of -239 dBc/Hz, very low 1/f noise of normalized -287 dBc/Hz and high PFD frequency that can achieve ultra-low in-band noise and integrated jitter. The ADF4368 can generate any frequency from 800 MHz to 12.8 GHz without an internal doubler, which eliminates the need for sub-harmonic filters. The  $\Sigma$ - $\Delta$  modulator includes a 25-bit fixed modulus that allows hertz frequency resolution and an additional 17-bit variable modulus, which allows even finer resolution and flexibility for frequency planning. The 9 dBm output power at 12.8 GHz in single-ended configuration with 16 step power adjust feature makes it very useful for any application.

For multiple frequency conversion applications, such as phase array radar or massive MIMO systems, the outputs of multiple ADF4368 can be aligned by using the SYNC input or EZSync<sup>™</sup>. The EZSync method is used when it is difficult to distribute the SYNC signal to all devices precisely. For applications that require deterministic delay or delay adjustment capability, a programmable reference to output delay with <1 ps resolution is provided. The reference to output delay is guaranteed across multiple devices and temperature, allowing for predictable and precise multichip alignment.

The simplicity of the ADF4368 block diagram eases development time with a simplified serial-peripheral interface (SPI) register map, external SYNC input, and repeatable multichip phase alignment both in integer mode and fractional mode.

## FUNCTIONAL BLOCK DIAGRAM



Figure 1. ADF4368 Block Diagram

Rev. 0

DOCUMENT FEEDBACK

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

# TABLE OF CONTENTS

| Features                                    | 1  |
|---------------------------------------------|----|
| Applications                                | 1  |
| General Description                         | 1  |
| Functional Block Diagram                    | 1  |
| Specifications                              | 3  |
| Serial Interface Timing Characteristics     | 7  |
| Timing Diagrams                             | 7  |
| Absolute Maximum Ratings                    | 8  |
| Transistor Count                            | 8  |
| Thermal Resistance                          | 8  |
| Electrostatic Discharge (ESD) Ratings       | 8  |
| ESD Caution                                 | 8  |
| Pin Configuration and Function Descriptions | 9  |
| Typical Performance Characteristics         | 11 |
| Theory of Operation                         | 16 |

# **REVISION HISTORY**

3/2023—Revision 0: Initial Version

| Introduction                         | 16 |
|--------------------------------------|----|
| Output Frequency                     | 16 |
| Circuit Description                  | 16 |
| Applications Information             | 22 |
| Loop Filter Design                   | 22 |
| Reference Source Considerations      | 22 |
| Output Phase Noise Characteristics   | 23 |
| Power-Up and Initialization Sequence | 23 |
| Power Supply and Bypassing           | 26 |
| Register Maps                        | 27 |
| Register Details                     | 30 |
| Outline Dimensions                   | 54 |
| Ordering Guide                       | 54 |
| Evaluation Boards                    | 54 |
|                                      |    |

 $V_{3.3V\_1} = V_{3.3V\_2} = 3.15$  V to 3.45 V,  $V_{V5\_VCO} = V_{V5\_CP} = V_{V5\_CAL} = 4.75$  V to 5.25 V, all voltages are with respect to GND,  $T_A = -40^{\circ}$ C to 105°C operating temperature range, unless otherwise noted.

#### Table 1. Electrical Specifications

| Parameter                                      | Symbol          | Min              | Тур          | Max              | Unit             | Test Conditions/Comments                                       |
|------------------------------------------------|-----------------|------------------|--------------|------------------|------------------|----------------------------------------------------------------|
| REFERENCE INPUTS (REFP, REFN)                  |                 |                  |              |                  |                  |                                                                |
| Input Frequency                                | fREE            | 10               |              | 4000             | MHz              |                                                                |
| Input Signal Level                             | VRFF            | 0.5              |              | 2.6              | V p-p            | Differential                                                   |
| Min Input Slew Rate                            |                 |                  | 100          |                  | V/µs             |                                                                |
| Input Duty Cycle                               |                 |                  | 50           |                  | %                |                                                                |
| Self-Bias Voltage                              |                 |                  | 1.85         |                  | V                |                                                                |
| Input Resistance                               |                 |                  | 3            |                  | kΩ               | Differential                                                   |
| Input Capacitance                              |                 |                  | 1            |                  | pF               | Differential                                                   |
| Input Current                                  |                 |                  | 2            |                  | μA               |                                                                |
| REFERENCE PEAK DETECTOR                        |                 |                  |              |                  |                  |                                                                |
| Input Frequency                                |                 | 10               |              | 4000             | MHz              |                                                                |
| Minimum Input Signal Detected (REF_OK = 1)     |                 |                  | 200          |                  | mV <sub>pp</sub> | f <sub>RFF</sub> = 100 MHz, single-ended sine wave             |
| Maximum Input Signal Not Detected (REF OK = 0) |                 |                  | 160          |                  | mV <sub>pp</sub> | f <sub>RFF</sub> = 100 MHz, single-ended sine wave             |
| SYNC INPUTS (SYNCP, SYNCN)                     |                 |                  |              |                  |                  |                                                                |
| Input Signal Level                             | VRFF            | 0.4 <sup>1</sup> |              | 2.6 <sup>1</sup> | V p-p            | LVDS mode, differential                                        |
|                                                | VREE            | 0.51             |              | 2.6 <sup>1</sup> | V p-p            | CML mode, differential                                         |
| Self-Bias Voltage                              |                 | 0.0              | 13           |                  | V                | IVDS mode                                                      |
|                                                |                 |                  | 1.85         |                  | v                | CML mode                                                       |
| Input Resistance                               |                 |                  | 3            |                  | kO               | Differential                                                   |
| Input Capacitance                              |                 |                  | 1            |                  | pF               | Differential                                                   |
| Input Current                                  |                 |                  | 3            |                  | uA               |                                                                |
| REFERENCE DIVIDER (R)                          |                 |                  | •<br>        |                  |                  |                                                                |
| B                                              |                 | 1                |              | 63               |                  | All integers included                                          |
| REFERENCE DOUBLER                              |                 |                  |              |                  |                  |                                                                |
| Input Frequency                                | fener           | 10               |              | 250              | MHz              | EN RDBLR = 1                                                   |
| PHASE/FREQUENCY DETECTOR (PFD)                 | RODE            |                  |              |                  |                  |                                                                |
| Input Frequency                                | foro            |                  |              |                  |                  |                                                                |
|                                                | T               | 31               |              | 625              | MHz              | Integer mode                                                   |
|                                                |                 | 31               |              | 250              | MHz              | Fractional mode svnc or non-svnc                               |
|                                                |                 |                  |              |                  |                  | applications                                                   |
|                                                |                 | 3 <sup>1</sup>   |              | 250 <sup>1</sup> | MHz              | Fractional mode phase resync applications                      |
|                                                |                 |                  |              |                  |                  | when $f_{OUT} \ge 3 \text{ GHz}$                               |
|                                                |                 | 75 <sup>1</sup>  |              | 250 <sup>1</sup> | MHz              | Fractional mode phase resync applications                      |
|                                                |                 |                  |              |                  |                  | when f <sub>OUT</sub> < 3 GHz                                  |
| CHARGE PUMP (CP)                               |                 |                  | 0 70 / // /  |                  |                  |                                                                |
| Output Current Range                           | I <sub>CP</sub> |                  | 0.79 to 11.1 |                  | mA               | Set by CP_I                                                    |
| Output Current Source/Sink Accuracy            |                 |                  | ±2           |                  | %                | All setting, = $V_{CP} = V_{V5_CP}/2$                          |
| Output Current Source/Sink Matching            |                 |                  | ±2           |                  | %                | All setting, $V_{CP} = V_{V5_CP} / 2$                          |
| Output Current vs. Output Volt Sensitivity     |                 |                  | 0.2          |                  | %V/V             | $1.4 V < V_{V5_{CP}} < V_{CP-5V} - 1.6 V$                      |
| Output Current vs. Temperature                 |                 |                  | 400          |                  | ppm/C            | $V_{CP} = V_{V5_{CP}}/2$                                       |
| Output High-Z Leakage Current                  |                 |                  | -0.01        |                  | μA               | Minimum $I_{CP}$ , 1.4 V < $V_{V5_{CP}}$ < $V_{CP-5V}$ – 1.6 V |
| Output High-Z Leakage Current                  |                 |                  | -0.3         |                  | μA               | Maximum $I_{CP}$ , 1.4 V < $V_{V5_{CP}}$ < $V_{CP-5V}$ – 1.6 V |
| VCO                                            |                 |                  |              | 10-5             |                  |                                                                |
| Frequency Range                                | fvco            | 6.4              | <b>. . .</b> | 12.8             | GHz              |                                                                |
| Iuning Sensitivity <sup>2, 3</sup>             | KVCO            |                  | 0.75 to 1.25 |                  | ∣%Hz/V           |                                                                |

# Table 1. Electrical Specifications (Continued)

| Parameter                                      | Symbol                                 | Min                     | Тур                                      | Max  | Unit  | Test Conditions/Comments                                                                                                                       |
|------------------------------------------------|----------------------------------------|-------------------------|------------------------------------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| DIV_RCLK VCO Calibration Frequency             | f <sub>DIV_RCLK</sub>                  |                         |                                          | 125  | MHz   | Must set DCLK_MODE = 1, when f <sub>DIV_RCLK</sub> ><br>80 MHz                                                                                 |
| FEEDBACK (N) AND OUTPUT DIVIDER (O)            |                                        |                         |                                          |      |       |                                                                                                                                                |
| Ν                                              |                                        | 4                       |                                          | 4095 |       | Integer mode                                                                                                                                   |
|                                                |                                        | 19                      |                                          | 4095 |       | Fractional mode                                                                                                                                |
| 0                                              |                                        | 1                       |                                          | 8    |       | 1, 2, 4, 8                                                                                                                                     |
| RF OUTPUTS (RFOUT1P/N, RFOUT2P/N)              |                                        |                         |                                          |      |       | Differential termination = $100 \Omega$ for all RF output specifications, unless noted                                                         |
| Output Frequency                               | four                                   | 0.8                     |                                          | 12.8 | GHz   |                                                                                                                                                |
| Output Single-Ended Power                      | V <sub>OD</sub>                        |                         | 9                                        |      | dBm   | CLK1_OPWR = CLK2_OPWR = 15, f <sub>OUT</sub> = 4<br>GHz to 12.8 GHz                                                                            |
|                                                |                                        |                         | 5.5                                      |      | dBm   | CLK1_OPWR = CLK2_OPWR = 10, f <sub>OUT</sub> = 4<br>GHz to 12.8 GHz                                                                            |
|                                                |                                        |                         | 1.5                                      |      | dBm   | CLK1_OPWR = CLK2_OPWR = 5, f <sub>OUT</sub> = 4<br>GHz to 12.8 GHz                                                                             |
|                                                |                                        |                         | -2                                       |      | dBm   | CLK1_OPWR = CLK2_OPWR = 0, f <sub>OUT</sub> = 4<br>GHz to 12.8 GHz                                                                             |
| Output Resistance                              |                                        |                         | 100                                      |      | Ω     | Differential                                                                                                                                   |
| Output Common Mode                             |                                        |                         | V <sub>3.3V_2</sub> -<br>V <sub>OD</sub> |      | V     | No pull-up inductor                                                                                                                            |
|                                                |                                        |                         | V <sub>3.3V 2</sub>                      |      | V     | With pull-up inductor                                                                                                                          |
| Output Rise Time                               | t <sub>R</sub>                         |                         | 18                                       |      | ps    | 20%-80%, CLK1_OPWR = CLK2_OPWR = 10,                                                                                                           |
| Output Fall Time                               | t <sub>F</sub>                         |                         | 18                                       |      | ps    | 80%-20%, CLK1_OPWR = CLK2_OPWR = 10,                                                                                                           |
| Output Duty Cycle                              |                                        |                         | 50                                       |      | %     |                                                                                                                                                |
| Skew, RFOUT1 to RFOUT2                         |                                        |                         | 3 ± 1                                    |      | ps    | One ADF4368 device                                                                                                                             |
|                                                |                                        |                         | 3 ± 1                                    |      | ps    | Across multiple ADF4368 devices, T <sub>J</sub><br>within 10°C, same R_DIV, CLKOUT_DIV,<br>EN_RDBLR used                                       |
| REFERENCE INPUT TO OUTPUT DELAY                |                                        |                         |                                          |      |       | Device setup for all delay specifications,<br>unless noted, measure rising reference edge<br>at REFP input to rising edge at RFOUT1P<br>output |
| Propagation Delay                              | t <sub>PD</sub>                        |                         | 190                                      |      | ps    | REF_SEL = 0, R = 1, doubler = disabled                                                                                                         |
| Propagation Delay Temperature Coefficient      | t <sub>PD</sub>                        |                         | 0.06                                     |      | ps/°C | REF_SEL = 0                                                                                                                                    |
| LOGIC INPUTS (CSB, SCLK, SDIO, ENCLK1, ENCLK2) |                                        |                         |                                          |      |       |                                                                                                                                                |
| Input High Voltage                             | V <sub>INH</sub>                       | 1.2                     |                                          |      | V     |                                                                                                                                                |
| Input Low Voltage                              | V <sub>INL</sub>                       |                         |                                          | 0.6  | V     |                                                                                                                                                |
| Input Current (High, Low)                      | I <sub>IH</sub> /I <sub>IL</sub>       |                         |                                          | ±1   | μA    |                                                                                                                                                |
| Input Capacitance                              | C <sub>IN</sub>                        |                         | 2                                        |      | pF    |                                                                                                                                                |
| LOGIC INPUT (CE)                               |                                        |                         |                                          |      |       |                                                                                                                                                |
| Input High Voltage                             | V <sub>INH-3V</sub>                    | 1.8                     |                                          |      | V     |                                                                                                                                                |
| Input Low Voltage                              | V <sub>INL-3V</sub>                    |                         |                                          | 0.8  | V     |                                                                                                                                                |
| Input Current (High, Low)                      | I <sub>IH-3V</sub> /I <sub>IL-3V</sub> |                         |                                          | ±1   | μA    |                                                                                                                                                |
| Input Capacitance                              | C <sub>IN-3V</sub>                     |                         | 1                                        |      | pF    |                                                                                                                                                |
| LOGIC OUTPUTS (SDIO, SDO, LKDET, MUXOUT)       |                                        |                         |                                          |      |       |                                                                                                                                                |
| Output High Voltage                            | V <sub>OH</sub>                        | 1.5                     | 1.8                                      |      | V     | I <sub>OH</sub> = 500 μA, 1.8 V output selected (default setting)                                                                              |
| Output High Voltage                            | V <sub>OH-3V</sub>                     | V <sub>3.3V</sub> - 0.4 |                                          |      |       | $I_{OH}$ = 500 µA, 3.3 V output selected, set by voltage on V LDO pin                                                                          |

## Table 1. Electrical Specifications (Continued)

| Parameter                          | Symbol                           | Min  | Тур | Max  | Unit | Test Conditions/Comments                                                                                                                      |
|------------------------------------|----------------------------------|------|-----|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Output Low Voltage                 | V <sub>OL</sub>                  |      |     | 0.4  | V    | I <sub>OL</sub> = 500 μA                                                                                                                      |
| SDO High-Z Leakage                 | I <sub>ZH</sub> /I <sub>ZL</sub> |      |     | ±1   | μA   |                                                                                                                                               |
| POWER SUPPLIES                     |                                  |      |     |      |      | Device setup is default configuration for all supply current specifications, unless noted                                                     |
| V5_VCO Supply Range                | V <sub>V5 VCO</sub>              | 4.75 | 5   | 5.25 | V    |                                                                                                                                               |
| V5_CAL Supply Range                | V <sub>V5 CAL</sub>              | 4.75 | 5   | 5.25 | V    |                                                                                                                                               |
| V5 CP Supply Range                 | V <sub>V5 CP</sub>               | 4.75 | 5   | 5.25 | V    |                                                                                                                                               |
| V <sub>3.3V_1</sub> Supply Range   | V <sub>3.3V_1</sub>              | 3.15 | 3.3 | 3.45 | V    | Group 1: V3_LS, V3_LDO, V3_REF, V3_PFD, V3_NDIV, V3_SYNC                                                                                      |
| V <sub>3.3V_2</sub> Supply Range   | V <sub>3.3V_2</sub>              | 3.15 | 3.3 | 3.45 | V    | Group 2: V3_RFOUT1, V3_RFOUT2,<br>V3_VCO, V3_CLKDIV                                                                                           |
| V5 VCO Supply Current              | Iv5 vco                          |      | 98  |      | mA   | f <sub>OUT</sub> = 12.8 GHz                                                                                                                   |
| ,                                  | 10_100                           |      | 173 | 220  | mA   | $f_{OUT} = 6.4 \text{ GHz}$                                                                                                                   |
| V5 CAL Supply Current              | IV5 CAL                          |      | 50  |      | μA   |                                                                                                                                               |
| ,                                  | V0_0/12                          |      | 8   |      | mA   | During VCO calibration                                                                                                                        |
| V5 CP Supply Current               | V5 CP                            |      | 58  | 67   | mA   | I <sub>CP</sub> = 11.1 mA. CP I = 15                                                                                                          |
| ·                                  |                                  |      | 41  |      | mA   | $I_{CP} = 0.79 \text{ mA}$ , CP $I = 0$                                                                                                       |
|                                    |                                  |      | 3.2 |      | mA   | Additional current when EN_BLEED = 1,<br>BLEED I = 8191                                                                                       |
| V <sub>3.3V_1</sub> Supply Current | I <sub>3.3V_1</sub>              |      | 185 | 210  | mA   | f <sub>REF</sub> = 122.88 MHz, f <sub>PFD</sub> = 245.76 MHz,<br>fractional mode, CP_I = 15, PD_SYNC = 1<br>(sync disabled)                   |
|                                    |                                  |      | 4   |      | mA   | Additional current when PD_LD = 0                                                                                                             |
|                                    |                                  |      | 4   |      | mA   | Additional current when PD_RDET = 1                                                                                                           |
| V3 SYNC Supply Current             | IV3 SYNC                         |      | 15  |      | mA   | PD SYNC = 0 (synchronization is enabled)                                                                                                      |
| V3 REOUTX Supply Current           |                                  |      | 35  |      | mA   | $CIK_{X}$ OPWR = 0                                                                                                                            |
| ·                                  | -v3_N-001                        |      | 47  |      | mA   | $CI K_X OPWR = 4$                                                                                                                             |
|                                    |                                  |      | 65  |      | mA   | $CLK_X OPWR = 8$                                                                                                                              |
|                                    |                                  |      | 90  |      | mA   | $CLK_X OPWR = 12$                                                                                                                             |
|                                    |                                  |      | 105 |      | mA   | $CLK_{X} OPWR = 15$                                                                                                                           |
| V3 OUTDIV Supply Current           |                                  |      | 108 |      | mA   | CLKOUT DIV = 0 (divide by 1)                                                                                                                  |
|                                    | 103_001010                       |      | 132 |      | mA   | CLKOUT DIV = 3 (divide by 8)                                                                                                                  |
| V <sub>3.3V_2</sub> Supply Current | I <sub>3.3V_2</sub>              |      | 149 |      | mA   | ENRFOUT1 = low, CLK2_OPWR = 0<br>(minimum power), CLKOUT_DIV = 0, f <sub>OUT</sub> =<br>9.6 GHz                                               |
|                                    |                                  |      | 218 |      | mA   | ENRFOUT1 = low, CLK2_OPWR = 15<br>(maximum power), CLKOUT_DIV = 0, f <sub>OUT</sub> =<br>9.6 GHz                                              |
|                                    |                                  |      | 172 |      | mA   | ENRFOUT1 = low, CLK2_OPWR = 0<br>(minimum power), CLKOUT_DIV = 1, f <sub>OUT</sub> =<br>5.6 GHz                                               |
|                                    |                                  |      | 241 |      | mA   | ENRFOUT1 = low, CLK2_OPWR = 15<br>(maximum power), CLKOUT_DIV = 1, f <sub>OUT</sub> =<br>5.6 GHz                                              |
| Typical Power Dissipation          | P <sub>DIS</sub>                 |      | 2.3 |      | W    | ENRFOUT1 = low, CLK2_OPWR = 15<br>(maximum power), CLKOUT_DIV = 0, f <sub>OUT</sub><br>= 9.6 GHz, SYNC block powered down,<br>fractional mode |
|                                    |                                  |      | 2.1 |      | W    | ENRFOUT1 = low, CLK2_OPWR = 15<br>(maximum power), CLKOUT_DIV = 1, f <sub>OUT</sub>                                                           |

## Table 1. Electrical Specifications (Continued)

| Parameter                                         | Symbol               | Min | Тур  | Max  | Unit              | Test Conditions/Comments                                                     |
|---------------------------------------------------|----------------------|-----|------|------|-------------------|------------------------------------------------------------------------------|
|                                                   |                      |     |      |      |                   | = 5.6 GHz, SYNC block powered down,<br>fractional mode                       |
| Typical Power Down Current, 3.3 V                 |                      |     | 11   | 15   | mA                | PD_ALL = 1, I <sub>3.3V 1</sub> + I <sub>3.3V 2</sub>                        |
| Typical Power Down Current, 5 V Supplies          |                      |     | 350  | 750  | μA                | PD_ALL = 1, I <sub>V5 VCO</sub> + I <sub>V5 CAL</sub> + I <sub>V5 CP</sub>   |
| Typical Disable Current, 3.3 V Supplies           |                      |     | 100  | 1500 | μA                | CE = low, $I_{3.3V 1} + I_{3.3V 2}$                                          |
| Typical Disable Current, 5 V Supplies             |                      |     | 350  | 750  | μA                | $CE = Iow, I_{V5 VCO} + I_{V5 CAL} + I_{V5 CP}$                              |
| RF OUTPUT NOISE CHARACTERISTICS                   |                      |     |      |      |                   |                                                                              |
| 12.8 GHz Output Frequency                         |                      |     |      |      |                   | $f_{REF} = f_{PFD} = 250 \text{ MHz}$ , fractional mode, CP_I<br>= 15        |
| Phase Noise Floor                                 |                      |     | -160 |      | dBc/Hz            |                                                                              |
| RMS Jitter, 100 Hz to 100 MHz Integration         |                      |     | 32   |      | fs <sub>RMS</sub> |                                                                              |
| 9.001 GHz Output Frequency                        |                      |     |      |      |                   | $f_{REF} = f_{PFD} = 250 \text{ MHz}$ , fractional mode, CP_I<br>= 15        |
| Phase Noise Floor                                 |                      |     | -160 |      | dBc/Hz            |                                                                              |
| RMS Jitter, 100 Hz to 100 MHz Integration         |                      |     | 29   |      | fs <sub>RMS</sub> |                                                                              |
| 7.6 GHz Output Frequency                          |                      |     |      |      |                   | f <sub>REF</sub> = f <sub>PFD</sub> = 250 MHz, fractional mode, CP_I<br>= 15 |
| Phase Noise Floor                                 |                      |     | -160 |      | dBc/Hz            |                                                                              |
| RMS Jitter, 100 Hz to 100 MHz Integration         |                      |     | 31   |      | fs <sub>RMS</sub> |                                                                              |
| 6.4 GHz Output Frequency                          |                      |     |      |      |                   | f <sub>REF</sub> = f <sub>PFD</sub> = 250 MHz, fractional mode, CP_I<br>= 15 |
| Phase Noise Floor                                 |                      |     | -161 |      | dBc/Hz            |                                                                              |
| RMS Jitter, 100 Hz to 100 MHz Integration         |                      |     | 30   |      | fs <sub>RMS</sub> |                                                                              |
| 5.025 GHz Output Frequency                        |                      |     |      |      |                   | f <sub>REF</sub> = f <sub>PFD</sub> = 250 MHz, fractional mode, CP_I<br>= 15 |
| Phase Noise Floor                                 |                      |     | -163 |      | dBc/Hz            |                                                                              |
| RMS Jitter, 100 Hz to 100 MHz Integration         |                      |     | 33   |      | fs <sub>RMS</sub> |                                                                              |
| Normalized In-Band Phase Noise Floor <sup>4</sup> |                      |     |      |      |                   |                                                                              |
| L <sub>NORM-INT</sub>                             |                      |     | -239 |      | dBc/Hz            |                                                                              |
| L <sub>NORM-FRC</sub>                             |                      |     | -237 |      | dBc/Hz            |                                                                              |
| Normalized 1/f Phase Noise Floor <sup>4, 5</sup>  |                      |     |      |      |                   |                                                                              |
| L <sub>1/f</sub> <sup>5</sup>                     |                      |     | -287 |      | dBc/Hz            | Normalized to 1 Hz                                                           |
| L <sub>1/f</sub> 1G 10k <sup>5</sup>              |                      |     | -147 |      | dBc/Hz            | Normalized to 1 GHz at 10 kHz offset                                         |
| Integer Boundary Spurs (Filtered)                 | IBS                  |     | -95  |      | dBc               | Spur is out of the loop bandwidth                                            |
| Integer Boundary Spurs (Unfiltered)               | IBS                  |     | -60  |      | dBc               | Measured at 5 kHz offset from integer channel                                |
| PFD Spur                                          |                      |     | -95  |      | dBc               |                                                                              |
| TEMPERATURE SENSOR (ADC)                          |                      |     |      |      |                   |                                                                              |
| ADC Clock Frequency                               | f <sub>ADC CLK</sub> |     |      | 400  | kHz               | ADC clock divider output                                                     |
| ADC Clock Divider Frequency                       | fADC CLKDIV          |     |      | 125  | MHz               | ADC clock divider input                                                      |
| Resolution                                        | _                    |     |      | 8    | Bits              |                                                                              |

<sup>1</sup> Based on design and characterization.

<sup>2</sup> Valid for 1.60 V  $\leq$  V<sub>VTUNE</sub>  $\leq$  2.85 V with device calibrated after a power cycle or software power-on reset.

<sup>3</sup> Based on characterization.

<sup>4</sup> These numbers are modeled in ADIsimPLL.

<sup>5</sup> Integration Range 1 kHz to f<sub>OUT</sub>.

# SERIAL INTERFACE TIMING CHARACTERISTICS

 $V_{3.3V\_1} = V_{3.3V\_2} = 3.15$  V to 3.45 V,  $V_{V5\_VCO} = V_{V5\_CP} = V_{V5\_CAL} = 4.75$  V to 5.25 V, all voltages are with respect to GND,  $T_A = -40^{\circ}$ C to +105°C operating temperature range, unless otherwise noted.

#### Table 2. Serial Interface Timing Characteristics

| Parameter                                | Symbol                   | Min | Тур | Max | Unit | Test Conditions/Comments             |
|------------------------------------------|--------------------------|-----|-----|-----|------|--------------------------------------|
| SERIAL INTERFACE (CSB, SCLK, SDIO, SDO)  |                          |     |     |     |      | See Figure 2, Figure 3, and Figure 4 |
| SCLK Frequency                           | f <sub>SCLK</sub>        |     |     | 65  | MHz  |                                      |
| SCLK Pulse Width High                    | t <sub>HIGH</sub>        | 7.6 |     |     | ns   |                                      |
| SCLK Pulse Width Low                     | t <sub>LOW</sub>         | 7.6 |     |     | ns   |                                      |
| SDIO Setup Time                          | t <sub>DS</sub>          | 3   |     |     | ns   |                                      |
| SDIO Hold Time                           | t <sub>DH</sub>          | 3   |     |     | ns   |                                      |
| SCLK Fall Edge to SDIO Valid Prop Delay  | t <sub>ACCESS_SDIO</sub> | 7.6 |     |     | ns   |                                      |
| SCLK Fall Edge to SDO Valid Prop Delay   | t <sub>ACCESS_SDO</sub>  | 7.6 |     |     | ns   |                                      |
| CSB Rising Edge to SDIO High-Z           | tz                       | 7.6 |     |     | ns   |                                      |
| CSB Falling Edge to SCLK Rise Setup Time | t <sub>s</sub>           | 3   |     |     | ns   |                                      |
| SCLK Rising Edge to CSB Rise Hold Time   | t <sub>H</sub>           | 3   |     |     | ns   |                                      |

## TIMING DIAGRAMS



Figure 2. Write Timing Diagram



Figure 3. 3-Wire Read Timing Diagram (SDO\_ACTIVE = 0)



Figure 4. 4-Wire Read Timing Diagram (SDO\_ACTIVE = 1)

# **ABSOLUTE MAXIMUM RATINGS**

 $T_A = 25^{\circ}C$ , unless otherwise noted.

#### Table 3. Absolute Maximum Ratings

| Parameter                                                              | Rating                                                              |
|------------------------------------------------------------------------|---------------------------------------------------------------------|
| V <sub>3.3V_1</sub> (V3_LS, V3_LDO, V3_REF, V3_PFD,<br>V3_NDIV) to GND | -0.3 V to +3.6 V                                                    |
| V <sub>3.3V_2</sub> (V3_VCO, V3_OUTDIV, V3_RFOUT1, V3_FOUT2) to GND    | -0.3 V to +3.6 V                                                    |
| V <sub>5V</sub> (V5_CAL, V5_VCO, V5_CP) to GND                         | -0.3 V to +5.5 V                                                    |
| Voltage on CP Pin                                                      | -0.3 V to V5_CP + 0.3 V                                             |
| Digital Outputs (MUXOUT, LKDET, SDO, SDIO)                             | 5 mA                                                                |
| RFOUT1P, RFOUT1N, RFOUT2P, RFOUT2N                                     | Maximum (GND - 0.3 V, $V_{3.3V_2}$ - 1.2 V) to $V_{3.3V_2}$ + 0.3 V |
| REFP, REFN                                                             | -0.65 V to V <sub>3.3V 1</sub> + 0.65 V                             |
| Voltage on all Other Pins                                              | -0.3 V to V <sub>3.3V 1</sub> + 0.3 V                               |
| REFP to REFN and SYNCP to SYNCN                                        | ±1.35 V                                                             |
| Temperature                                                            |                                                                     |
| Operating Junction Range <sup>1</sup>                                  | -40°C to +125°C                                                     |
| Storage Range                                                          | -65°C to +125°C                                                     |
| Maximum Junction                                                       | 125°C                                                               |
| Reflow Soldering                                                       |                                                                     |
| Peak Temperature                                                       | 260°C                                                               |
| Time at Peak Temperature                                               | 30 sec                                                              |

<sup>1</sup> Device is guaranteed to meet the specified performance limits over the full operating junction temperature range.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## TRANSISTOR COUNT

The transistor count for the ADF4368 is 199076 (CMOS) and 3366 (bipolar).

## THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{JA}$  is the natural convection, junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure.  $\theta_{JC}$  is the junction-to-case thermal resistance.

#### Table 4. Thermal Resistance

| Package Type          | θ <sub>JA</sub> | θ <sub>JC-TOP</sub> | θ <sub>JC-</sub><br>BOTTOM | θ <sub>JB</sub> | $\Psi_{JT}$ | Ψ <sub>JB</sub> | Unit |
|-----------------------|-----------------|---------------------|----------------------------|-----------------|-------------|-----------------|------|
| CC-48-13 <sup>1</sup> | 22.38           | 16.86               | 5.1                        | 8.33            | 1.35        | 7.89            | °C/W |

<sup>1</sup> Test Condition 1: thermal impedance simulated values are based on use of a 4-layer PCB with the thermal impedance paddle soldered to a ground plane.

# **ELECTROSTATIC DISCHARGE (ESD) RATINGS**

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDDEC JS-001. Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

## **ESD Ratings for ADF4368**

#### Table 5. ESD Ratings for ADF4368

| ESD Model | Withstand Threshold (V) | Class |
|-----------|-------------------------|-------|
| HBM       | 4000                    | 3A    |
| CDM       | 1000                    | C3    |

## ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 5. Pin Configuration

## Table 6. Pin Function Descriptions

| Pin Number       | Mnemonic            | Description                                                                                                                                                                                                                                                                                                                                                              |
|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 2, 4, 10, 12, | GND                 | Negative Power Supply (Ground). These pins must be tied directly to the ground pad.                                                                                                                                                                                                                                                                                      |
| 14, 16, 18, 19,  |                     |                                                                                                                                                                                                                                                                                                                                                                          |
| 21, 23, 25, 26,  |                     |                                                                                                                                                                                                                                                                                                                                                                          |
| 41,48<br>2       |                     | 2.45.V to 2.45.V Desitive Dever Supply Dinfer the DLL Feedback Divider Circuity, Short this pip to the other pipe in 2.2.V power supply                                                                                                                                                                                                                                  |
| 3                |                     | group 1.                                                                                                                                                                                                                                                                                                                                                                 |
| 5                | V3_VCO              | 3.15 V to 3.45 V Positive Power Supply Pin for the 3.3 V Portion of the VCO Circuitry. Short this pin to the other pins in 3.3 V power supply group 2.                                                                                                                                                                                                                   |
| 6                | DCLBIAS             | Do not connect to this pin.                                                                                                                                                                                                                                                                                                                                              |
| 7                | VTUNE               | VCO Tuning Input. This frequency control pin is normally connected to the external loop filter.                                                                                                                                                                                                                                                                          |
| 8                | V5_CAL              | 4.75 V to 5.25 V Positive Power Supply Pin for VCO Calibration Circuitry. This pin can be shorted to the V5_VCO supply plane.                                                                                                                                                                                                                                            |
| 9                | V5_VCO              | 4.75 V to 5.25 V Positive Power Supply Pin for the 5 V Portion of the VCO Circuitry.                                                                                                                                                                                                                                                                                     |
| 11               | V3_OUTDIV           | 3.15 V to 3.45 V Positive Power Supply Pin for the Output Divider Circuitry. Short this pin to the other pins in 3.3 V power supply group 2.                                                                                                                                                                                                                             |
| 13               | V3_RFOUT2           | 3.15 V to 3.45 V Positive Power Supply Pin for the RF Output 2 Buffer Circuitry. Short this pin to the other pins in 3.3 V power supply group 2.                                                                                                                                                                                                                         |
| 15, 17           | RFOUT2N,<br>RFOUT2P | RF Output 2 Signal. The VCO output divider is buffered and presented differentially on these pins. The outputs have 50 $\Omega$ (typical) output resistance per side (100 $\Omega$ differential). The far end of the transmission line is typically terminated with 100 $\Omega$ connected across the outputs. The output amplitude is programmable via the serial port. |
| 20, 22           | RFOUT1N,<br>RFOUT1P | RF Output 1 Signal. The VCO Output Divider is buffered and presented differentially on these pins. The outputs have 50 $\Omega$ (typical) output resistance per side (100 $\Omega$ differential). The far end of the transmission line is typically terminated with 100 $\Omega$ connected across the outputs. The output amplitude is programmable via the serial port. |
| 24               | V3_RFOUT1           | 3.15 V to 3.45 V Positive Power Supply Pin for the RF Output 1 Buffer Circuitry. Short this pin to the other pins in 3.3 V power supply group 2.                                                                                                                                                                                                                         |
| 27               | LKDET               | PLL Lock Detect. This output presents the lock status of the PLL. PLL is locked when LKDET is a logic high.                                                                                                                                                                                                                                                              |
| 28               | ENRFOUT2            | Enable RF Output 2 Buffer. 3.3 V CMOS input. When ENRFOUT2 = high, the RFOUT2P and RFOUT2N output buffer is active. When ENRFOUT2 = low, RFOUT2P and RFOUT2N are powered down.                                                                                                                                                                                           |
| 29               | ENRFOUT1            | Enable RF Output 1 Buffer. 3.3 V CMOS input. When ENRFOUT1 = high, the RFOUT1P and RFOUT1N output buffer is active. When ENRFOUT2 = low, RFOUT1P and RFOUT1N are powered down.                                                                                                                                                                                           |
| 30               | V3_LS               | 3.15 V to 3.45 V Positive Power Supply Pin for the Internal Level Shift Circuitry. Short this pin to the other pins in 3.3 V power supply group 1.                                                                                                                                                                                                                       |
| 31               | CE                  | Chip-Enable. Does not support 1.8 V CMOS levels. This CMOS input enables the device when driven high. A logic low disables the device, putting the device in a full power down state causing the register to reset. Conversely, the PD_ALL bit powers down the device, but does not reset the registers.                                                                 |
| 32               | CSB                 | Serial Port Chip Select. 1.8 V and 3.3 V compatible CMOS input. This CMOS input initiates a serial port communication burst when driven low, ending the burst when driven back high.                                                                                                                                                                                     |
| 33               | SDIO                | Serial Data Input/Output. 1.8 V and 3.3 V programmable CMOS input/output. When configured as an input, the serial port uses this CMOS input for data. In 3-wire readback mode (default mode), this pin outputs data from the serial port during a read communication burst.                                                                                              |

# **PIN CONFIGURATION AND FUNCTION DESCRIPTIONS**

# Pin Number Mnemonic Description 34 SCLK Serial Port Clock. 1.8 V and 3.3 V compatible. This CMOS input clocks serial port input data on its rising edge.

#### Table 6. Pin Function Descriptions (Continued)

| 35          | SDO          | Optional Serial Data Output. 1.8 V and 3.3 V programmable CMOS output. In 3-wire mode (default mode), this three-state CMOS pin remains in a high impedance state. In 4-wire readback mode, this pin presents data from the serial port during a read communication burst. When the CSB is deasserted, SDO returns to a high impedance. Optionally, attach a resistor of >200 k $\Omega$ to prevent a floating output.                                                        |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 36          | V3_LDO       | 3.15 V to 3.45 V Positive Power Supply Pin for the Internal LDO Circuitry. Short this pin to the other pins in 3.3 V power supply group 1.                                                                                                                                                                                                                                                                                                                                    |
| 37          | MUXOUT       | Internal Device Mux Output. This output pin can be connected to multiple internal nodes for factory test and debug purposes.                                                                                                                                                                                                                                                                                                                                                  |
| 38, 39      | SYNCP, SYNCN | Synchronization Input Signals. Both RF output signals are synchronized to an input signal at this pin. It is used for multichip phase synchronization. This differential input can accept both high and low common mode input signals (based on a SPI bit setting).                                                                                                                                                                                                           |
| 40          | V3_SYNC      | 3.15 V to 3.45 V Positive Power Supply for the Synchronization Circuitry. Short this pin to the other pins in 3.3 V power supply group 1.                                                                                                                                                                                                                                                                                                                                     |
| 42, 43      | REFP, REFN   | Reference Input Signal. This differential input is buffered with a delay matched amplifier (DMA) for well controlled reference to output propagation delays (default mode, REF_SEL = 0). For low slew rate reference input signals, an alternate low noise amplifier (LNA) can be selected via the serial port (REF_SEL = 1). Reference inputs are self-biased and must be AC-coupled with 1 $\mu$ F capacitors. Reference inputs accept differential or single-ended inputs. |
| 44          | V3_REF       | 3.15 V to 3.45 V Positive Power Supply Pin for the PLL Reference Circuitry. Short this pin to the other pins in 3.3 V power supply group 1.                                                                                                                                                                                                                                                                                                                                   |
| 45          | V3_PFD       | 3.15 V to 3.45 V Positive Power Supply Pin for PFD Circuitry. Short this pin to the other pins in 3.3 V power supply group 1.                                                                                                                                                                                                                                                                                                                                                 |
| 46          | V5_CP        | 4.75 V to 5.25 V Positive Power Supply Pin for Charge Pump Circuitry. Isolate this pin from the V5_VCO supply plane.                                                                                                                                                                                                                                                                                                                                                          |
| 47          | СР           | Charge Pump Output. This bidirectional current output is normally connected to the external loop filter.                                                                                                                                                                                                                                                                                                                                                                      |
| Exposed Pad | EP           | Exposed Pad. The LGA has an exposed paddle that must be connected to GND (Negative power supply). The exposed pad must be soldered directly to the PCB land. The PCB land pattern must have multiple thermal vias to the ground plane for both low ground inductance and also low thermal resistance.                                                                                                                                                                         |



Figure 6. Open Loop VCO Phase Noise vs. Offset Frequency at Various Frequencies



Figure 7. 12 GHz Open Loop VCO Phase Noise vs. Offset Frequency at Various Temperatures



Figure 8. 1 kHz to 100 MHz Integrated Jitter in Fractional Mode  $f_{PFD}$  = 250 MHz



Figure 9. 1 kHz to 100 MHz Integrated Jitter in Integer Mode  $f_{PFD}$  = 500 MHz



Figure 10. Close Loop Phase Noise at Various Frequencies



Figure 11. L<sub>NORM-INT</sub> vs. Bleed Setting







Figure 13.  $L_{NORM-FRC}$ ,  $f_{REF}$  = 500 MHz,  $f_{PFD}$  = 250 MHz,  $RF_{Out}$  = 12,001 MHz vs. Bleed Setting



Figure 14. L<sub>NORM-FRC</sub> vs. Bleed Setting



Figure 15. Worst Case IBS measured at 5 kHz, 50 kHz, 200 kHz, 300 kHz, 400 kHz, 960 kHz, 10 MHz offsets, f<sub>PFD</sub> = 245.76 MHz







Figure 17. De-Embedded Single-Ended Output Power at Various Output Power Settings



Figure 18. De-Embedded Single-Ended Output Power vs. Output Frequency over Temperature and Supply



Figure 19. Output Harmonics vs. VCO Frequency



Figure 20. Minimum Input Signal for REF\_OK = 1 for DMA Buffer



Figure 21. LNA Reference Input Sensitivity vs. Temperature



Figure 22. K<sub>VCO</sub> vs. VCO Frequency at Various Temperatures



Figure 23. K<sub>VCO</sub> Sensitivity Percentage vs. VCO Frequency at Various Temperatures



Figure 24. V<sub>TUNE</sub> vs. Output Frequency when Part Locked at 25°C







Figure 26. Propagation Delay







Figure 28. Phase Shift vs. Phase Adjustment, RF<sub>Out</sub> = 12,775 MHz at Various Temperatures



Figure 29. Phase Shift vs. Phase Adjustment at Various Frequencies



Figure 30. Output Power When Buffer Is Powered Down (PD\_CLKOUTx = 1)



Figure 31. VCO Current vs. VCO Frequency



Figure 32. Differential Output at 3 GHz

## INTRODUCTION

A PLL is a complex feedback system that may conceptually be considered a frequency multiplier. The system multiplies the frequency input at REFP and REFN and outputs a higher frequency at RFOUT1P, RFOUT2P, RFOUT1N, and RFOUT2N. The PFD, charge pump, output divider, feedback divider, VCO, and external loop filter forms a feedback loop to accurately control the output frequency (see Figure 33). The reference divider or reference doubler is used to set the frequency resolution.



Figure 33. PLL Loop Diagram

## **OUTPUT FREQUENCY**

When the loop is locked, the  $f_{VCO}$  (in Hz) produced at the output of the VCO is determined by the reference frequency ( $f_{REF}$ ) and the O, R, and N values given by the following equation.

$$f_{VCO} = f_{REF} \times \frac{D \times N \times O}{R} \tag{1}$$

Where N is given by:

$$N = N_{INT} + \frac{FRAC \, 1WORD + \frac{FRAC \, 2WORD}{MOD \, 2WORD}}{MOD \, 1WORD}$$
(2)

Here, the PFD frequency (f<sub>PFD</sub>) produced is given by:

$$f_{PFD} = \frac{f_{REF} \times D}{R} \tag{3}$$

f<sub>VCO</sub> may be alternatively expressed as:

$$f_{VCO} = f_{PFD} \times N \times O \tag{4}$$

The output frequency, f<sub>RFOUT</sub>, produced at the output of the output divider is given by:

$$f_{RFOUT} = \frac{f_{VCO}}{O} \tag{5}$$

## **CIRCUIT DESCRIPTION**

## **Reference Input Buffer**

The reference frequency of the PLL is applied differentially on the REFP and REFN pin. These high impedance inputs are self-biased and must be AC-coupled with 1  $\mu$ F capacitors (for a simplified schematic, see Figure 34). Alternatively, the inputs may be used as single-ended by applying the reference frequency at REFP and bypassing REFN to GND with a 1  $\mu$ F capacitor.



Figure 34. Reference Input Stage

A high quality signal must be applied to the REFP and REFN inputs because they provide the frequency reference to the entire PLL. To achieve the in-band phase noise performance of the device, apply a continuous wave signal or a square wave with a slew rate of at least 1000 V/µs. For more information on reference input signal requirements and interfacing, see the Applications Information section.

When the REF\_SEL bit is set to 0, the DMA buffer is selected. The DMA is optimized for high slew rate signals, such as square waves or higher frequency and higher amplitude sine waves. The DMA has a controlled propagation delay from the reference input to clock output, which eases time zero and over temperature multichip clock alignment.

When the REF\_SEL bit is set to 1, the LNA is selected. The LNA is optimized for low slew rate signals, such as lower frequency or lower amplitude sine waves.

The REF\_SEL bit must be set correctly to optimize the in-band phase noise performance and propagation delay. For recommended settings, see Table 7.

#### Table 7. REF\_SEL Programming

| REF_SEL | Sine Wave Slew Rate (V/µs) | Square Wave    | Optimized t <sub>PD</sub> |
|---------|----------------------------|----------------|---------------------------|
| 0       | ≥1000                      | Preferred      | Yes                       |
| 1       | <1000                      | Not applicable | Not applicable            |

To calculate the slew rate of sine wave:

Slew Rate =  $2 \times \pi \times f \times V$ 

Where:

f = sine wave frequency

V = sine wave amplitude (in  $V_{PK}$ )

The FILT\_REF bit controls the low-pass filter of the reference input LNA and must be set for sine wave signals based on  $f_{REF}$  to limit the wideband noise of the reference. The FILT\_REF bit must be set correctly to reach the L<sub>NORM</sub> normalized in-band phase noise floor. For recommended settings, see Table 8. Square wave inputs have FILT\_REF set to 0.

(6)

#### Table 8. FILT\_REF Programming

| FILT_REF | Sine Wave f <sub>REF</sub> | Square Wave f <sub>REF</sub> |
|----------|----------------------------|------------------------------|
| 0        | ≥ 20 MHz                   | All f <sub>REF</sub>         |
| 1        | < 20 MHz                   | Not applicable               |

The BST\_REF bit must be set based on the input signal level to prevent the LNA reference input buffer from saturating. The BST\_REF programming is the same whether the input is a sine wave or a square wave. For recommended settings, see Table 9 and for programming examples, see the Applications Information section.

#### Table 9. BST\_REF Programming

| BST_REF | Sine Wave f <sub>REF</sub> |
|---------|----------------------------|
| 0       | ≥ 1.6 V <sub>PP</sub>      |
| 1       | < 1.6 V <sub>PP</sub>      |

## **Reference Peak Detector**

A reference input peak detection circuit is provided on the REFP and REFN inputs to detect the presence of a reference signal and provides the REF\_OK status flag available through serial port register REG0058. The circuit has hysteresis to prevent the REF\_OK flag from chattering at the detection threshold.

The peak detector approximates an RMS detector. Therefore, sine and square wave inputs give different detection thresholds by a factor of  $4/\pi$ . For REF\_OK detection values, see Table 10.

| UΤ |
|----|
| ι  |

| REF_OK | Sine Wave f <sub>REF</sub> | Square Wave f <sub>REF</sub> |
|--------|----------------------------|------------------------------|
| 1      | ≥ 200 mV <sub>PP</sub>     | ≥ 155 mV <sub>PP</sub>       |
| 0      | < 180 mV <sub>PP</sub>     | < 140 mV <sub>PP</sub>       |

# Reference Divider (R) and Doubler (D)

When the EN\_RDBLR bit is set to 1, a frequency multiplier is used to double the frequency driven to the reference divider. A 6-bit divider, R\_DIV, in series with the reference doubler is used to reduce the frequency seen at the PFD. The reference divide ratio, R, may be set to any integer from 1 to 63. Use the R\_DIV bits found in REG0020 to directly program the R divide ratio. For the relationship between R, D, and the f<sub>REF</sub>, f<sub>PFD</sub>, f<sub>VCO</sub>, and f<sub>OUT</sub> frequencies, see the Output Frequency section.

## **Phase/Frequency Detector (PFD)**

The phase/frequency detector (PFD), with the charge pump, produces source and sink current pulses proportional to the phase difference between the outputs of the reference divider or reference doubler and the feedback divider. This action provides the necessary feedback to phase lock the loop, forcing a phase alignment at the inputs of the PFD. For a simplified schematic of the PFD, see Figure 35.



Figure 35. Simplified PFD Schematic

## **Charge Pump**

The charge pump, controlled by the PFD, forces sink (down) or source (up) current pulses onto the CP pin, which must be connected to an appropriate loop filter. For a simplified schematic of the charge pump, see Figure 36.



Figure 36. Simplified Charge Pump Schematic

The output current magnitude ( $I_{CP}$ ) may be set from 0.79 mA to 11.1 mA using the CP\_I bits found in REG001F. A larger  $I_{CP}$  can result in lower in-band noise due to the lower impedance of the loop filter components, and a smaller  $I_{CP}$  can result in better spurious performance. For programming specifics, see Table 11, and for information on designing a loop filter, see the Applications Information section.

| Table | 11. | СР | Progra | mming |
|-------|-----|----|--------|-------|
|-------|-----|----|--------|-------|

| CP_I | I <sub>CP</sub> |
|------|-----------------|
| 0    | 0.79 mA         |
| 1    | 0.99 mA         |
| 2    | 1.19 mA         |
| 3    | 1.38 mA         |
| 4    | 1.59 mA         |
| 5    | 1.98 mA         |
| 6    | 2.39 mA         |
| 7    | 2.79 mA         |
| 8    | 3.18 mA         |
| 9    | 3.97 mA         |
| 10   | 4.77 mA         |
| 11   | 5.57 mA         |
| 12   | 6.33 mA         |

#### Table 11. CP Programming (Continued)

| CP_I | I <sub>CP</sub> |
|------|-----------------|
| 13   | 7.91 mA         |
| 14   | 9.51 mA         |
| 15   | 11.1 mA         |

# **Charge Pump Functions**

When the EN\_CPTEST bit is set to 1, the CP\_UP bit and CP\_DOWN bit can be programmed to force a constant  $I_{CP}$  source or sink current, respectively, on the CP pin. EN\_CPTEST or CP\_UP and CP\_DOWN must be set to 0 to allow the loop to lock. These bits are commonly used as an aid to debug PLL related issues during the hardware and software development phase of a project. For normal operation, set EN\_CPTEST, CP\_UP, and CP\_DOWN to 0.

# **Charge Pump Bleed Current Optimization**

A small programmable constant charge pump current, known as bleed current ( $I_{BLEED}$ ), can be used to optimize the phase noise and fractional spurious signals in fractional mode. To enable the bleed current, set the EN\_BLEED bit to 1. When the BLEED\_POL bit is set to 1, a small constant source current is forced onto the CP pin. When the BLEED\_POL bit is set to 0, a small constant sink current is forced from the CP pin.

The 13-bits bleed current setting consists of 4-bit MSB for coarse setting and 9-bit LSB for fine setting. The coarse step is 180  $\mu$ A and the fine setting step is 490 nA.

The optimized bleed current value for fractional mode is calculated based on the charge pump current ( $I_{CP}$ ),  $f_{PFD}$ , and bleed delay ( $t_{BLEED}$ ). The recommended  $t_{BLEED}$  and BLEED\_POL are shown in Table 12 and Table 13.

#### Table 12. $t_{BLEED}$ and BLEED\_POL for $f_{PFD} \ge 120$ MHz

| Output Frequency                       | t <sub>BLEED</sub> | BLEED_POL |
|----------------------------------------|--------------------|-----------|
| f <sub>RFOUT</sub> ≥ 4.2 GHz           | 390 ps             | 0         |
| 3.0 GHz ≤ f <sub>RFOUT</sub> < 4.2 GHz | 900 ps             | 0         |
| 1.8 GHz ≤ f <sub>RFOUT</sub> < 3.0 GHz | 1200 ps            | 0         |
| f <sub>RFOUT</sub> < 1.8 GHz           | 1400 ps            | 0         |

The bleed current and BLEED\_I bit are calculated by the following equations:

$$I_{BLEED} = T_{BLEED} \times f_{PFD} \times I_{CP}$$
(7)

$$CoarseBleed = INT \left(\frac{I_{BLEED}}{180\mu}\right) \tag{8}$$

$$FineBleed = Round \left(512 \times \frac{I_{BLEED} - 180\mu \times CoarseBleed}{250\mu}\right)$$
(9)

$$BLEED_I = 512 \times CoarseBleed + FineBleed$$
 (10)

|                                           | N                  | ≥ 35          | ١                  | N < 35        |
|-------------------------------------------|--------------------|---------------|--------------------|---------------|
| RF Frequency                              | t <sub>BLEED</sub> | BLEED_<br>POL | t <sub>BLEED</sub> | BLEED_<br>POL |
| f <sub>RFOUT</sub> ≥ 4.2 GHz              | 390 ps             | 0             | 390 ps             | 0             |
| 3.0 GHz ≤ f <sub>RFOUT</sub> < 4.2<br>GHz | 1200 ps            | 1             | 900 ps             | 0             |
| 1.8 GHz ≤ f <sub>RFOUT</sub> < 3.0<br>GHz | 1200 ps            | 0             | 1200 ps            | 1             |
| 1.2 GHz ≤ f <sub>RFOUT</sub> < 1.8<br>GHz | 1400 ps            | 0             | 1400 ps            | 1             |
| f <sub>RFOUT</sub> < 1.2 GHz              | 1400 ps            | 0             | 2000 ps            | 1             |

Bleed current also changes the propagation delay from the REFP and REFN input pins to the RFOUTxP and RFOUTxN output pins. In integer mode, bleed current can be used to shift the output in both directions. If BLEED\_POL = 0, the propagation delay from the REFP and REFN input pins to the RFOUTxP and RFOUTxN output pins increases.

In fractional mode, after setting the bleed current for the best performance, the output can be shifted by using the PHASE\_ADJUST-MENT bits in REG0024, which are effectively used in sigma-delta modulator (SDM). Phase adjustment does not cause any phase noise degradation.

# Lock Detector

The lock detector uses internal signals from the PFD to measure phase coincidence between RCLK and NCLK. It is enabled by setting both the EN\_LOL bit and EN\_LDWIN bit to 1 in REG002D and presents the lock detector output on the LKDET pin and the LOCKED bit in REG0058. The lock detector output can also be presented on the MUXOUT pin by programming the MUXOUT bits in REG002E.

The PFD phase difference must be less than the phase difference lock window time  $(t_{LDWIN})$  for a set number of PFD cycles before the lock detector output indicates that the PLL has locked. The user sets the  $t_{LDWIN}$  for a valid lock condition with the LDWIN\_PW bits depending on the operation mode,  $f_{PFD}$ , and  $f_{RFOUT}$ . The recommended settings for the LDWIN\_PW bits are given in Table 14.

| Table 14. | LDWIN | PW Pro | oarammina |
|-----------|-------|--------|-----------|
|           |       |        | · g       |

| LDWIN_PW | Configuration                                               |
|----------|-------------------------------------------------------------|
| 0        | Integer PLL, t <sub>BLEED</sub> ≤ 85 ps                     |
| 1        | Integer PLL, 85 ps > t <sub>BLEED</sub> < 250 ps            |
| 10       | Fractional PLL, f <sub>PFD</sub> > 200 MHz and RF > 6.4 GHz |
| 11       | Fractional PLL, f <sub>PFD</sub> > 200 MHz and RF > 5 GHz   |
| 100      | Fractional PLL, f <sub>PFD</sub> < 200 MHz                  |
| 101      | Fractional PLL, f <sub>PFD</sub> < 100 MHz                  |
| 110      | Fractional PLL, f <sub>PFD</sub> < 50 MHz                   |
| 111      | Fractional PLL, f <sub>PFD</sub> < 40 MHz                   |

The desired number of PFD cycles varies if a designer prioritizes lock detect accuracy or speed. Five loop filter time constants can be used as an initial estimate of the desired number of PFD cycles, as shown in Equation 11. The desired number of PFD cycles is set by the LD\_COUNT bits in REG002C as with and the formula shown in the Register Details section. The user sets the LD\_COUNT such that actual PFDcycles is greater than desired PFD cycles. For more details, see Figure 37 and Table 16.

$$Desired PFD Cycles = \frac{5}{2 \times \pi \times LPBW}$$
(11)

Where LPBW is loop filter bandwidth.

| Table | 15. LD | COUNT | Programmi | na |
|-------|--------|-------|-----------|----|
|       |        |       |           |    |

| LD_COUNT | Actual PFD Cycles |
|----------|-------------------|
| 0        | 27                |
| 1        | 35                |
| 2        | 51                |
| 3        | 67                |
| 4        | 99                |
| 5        | 131               |
| 6        | 195               |
| 7        | 259               |
| 8        | 387               |
| 9        | 515               |
| 10       | 771               |
| 11       | 1027              |
| 12       | 1539              |
| 13       | 2051              |
| 14       | 3075              |
| 15       | 4099              |
| 16       | 6147              |
| 17       | 8195              |
| 18       | 12291             |
| 19       | 16387             |
| 20       | 24579             |
| 21       | 32771             |
| 22       | 49155             |
| 23       | 65539             |
| 24       | 98307             |
| 25       | 131075            |
| 26       | 196611            |
| 27       | 262147            |
| 28       | 393219            |
| 29       | 524291            |
| 30       | 786435            |
| 31       | 1048579           |



Figure 37. Lock Detector Timing, Bleed Current Disabled

| Table 16. Lock Detector Tim | ing, Bleed Current Disabled |
|-----------------------------|-----------------------------|
|-----------------------------|-----------------------------|

| <b>_</b> . | Absolute Phase Difference at |                                 |
|------------|------------------------------|---------------------------------|
| Region     | PFD                          | Lock Detector State             |
| 1          | > t <sub>LDWIN</sub>         | Low                             |
| 2          | < t <sub>LDWIN</sub>         | Low, counts PFD cycles          |
| 3          | ~0                           |                                 |
| 4          | ~0                           | High, > desired PFD cycle count |
| 5          | < t <sub>LDWIN</sub>         | High                            |
| 6          | > t <sub>LDWIN</sub>         | Low (immediately)               |

When the charge pump bleed current is enabled, a phase offset is applied to the PFD inputs. This phase offset  $(t_{IDEL})$  is proportional to the amount of bleed current. Region 3 and Region 4 in Figure 37 and Figure 38 highlight the PFD phase difference that the PLL settles to when the charge pump bleed current is disabled or enabled, respectively.



Figure 38. Lock Detector Timing, Bleed Current Enabled

## VCO

The VCO core consists of four separate VCOs, each of which uses 256 overlapping bands, which allows the device to cover a wide frequency range without large VCO sensitivity ( $K_V$ ). The output frequency can be further extended by using the output divider.



Figure 39. VCO and Clock Output Divider

The correct register values for the VCO\_CORE, VCO\_BAND, and VCO\_BIAS settings are determined by performing a VCO calibration. After a VCO calibration is performed for a specific device and frequency, the VCO\_CORE, VCO\_BAND, and VCO\_BIAS values can be recorded. These recorded values may be programmed manually on subsequent power ups when the same device and frequency are used, thereby avoiding the VCO calibration time.

# VCO Calibration

A VCO calibration is required to select the correct VCO core, band, and bias settings for a specific VCO frequency. This procedure assumes that the device is powered up, the desired reference frequency is present on the REFP and REFN pins, and all other registers are programmed correctly. Figure 40 and Figure 41 show the visual aids for this procedure.







Figure 41. VCO Calibration Block

To perform a VCO calibration, set up several registers as outlined in the following procedure:

1. Set DCLK\_DIV1, , and DCLK\_MODE to the values in Table 17. Record f<sub>DIV RCLK</sub> for later use.  Calculate and set the minimum values for the SYNTH\_LOCK\_TIMEOUT bit fields, Bits[14:0], the VCO\_ALC\_TIMEOUT bit fields, Bits[14:0], and VCO\_BAND\_DIV bits. Typical automatic VCO calibration times are 3 ms to 9 ms when minimum values are chosen for these parameters. Larger values produce longer VCO calibration times.

$$\frac{VCO\_ALC\_TIMEOUT}{(50\mu s \times f_{DIV\_RCLK})} \ge Ceiling$$
(13)

$$VCO\_BAND\_DIV \geq Ceiling \left(\frac{15\mu s \times f_{DIV\_RCLK}}{16 \times 2^{DCLK\_MODE}}\right)$$
(14)

**3.** Ensure that the ADC\_CLK\_DIV bits are set so that the desired ADC clock frequency is <400 kHz:

$$ADC_{CLK_{DIV} > Ceiling} \left( \frac{\left( \frac{f_{DIV_{RCLK}}}{400 k Hz} - 2 \right)}{4} \right)$$
(15)

- Set the N\_INT, CLKOUT\_DIV bits, R\_DIV bits, and the EN\_RDBLR bit by programming REG0010 last. Any write to REG0010 starts the VCO autocalibration.
- 5. Monitor the ADC\_BUSY bit and FSM\_BUSY bit. The calibration is finished when ADC\_BUSY transitions from high to low, followed with FSM\_BUSY transitioning from high to low.
- After the VCO calibration is complete, disable the calibration clocks to limit unwanted spurious content by setting EN\_DRCLK = EN\_DNCLK = EN\_ADC\_CLK = 0.
- 7. This is an optional step. Read back and record the VCO\_CORE bits, VCO\_BAND bits, and VCO\_BIAS bits. These values can be used to bypass calibration and manually program the M\_VCO\_CORE bits, M\_VCO\_BAND bits, and M\_VCO\_BIAS bits for a given device and frequency.

| Table 17. DCLK_I | DIV1 and DCLK | MODE Setup |
|------------------|---------------|------------|
|------------------|---------------|------------|

| f <sub>PFD</sub> (MHz) | DCLK_DIV1 | DCLK_MODE | f <sub>DIV_RCLK</sub> (MHz) |
|------------------------|-----------|-----------|-----------------------------|
| ≤160                   | 0         | 1         | f <sub>PFD</sub> /2         |
| >160 and ≤320          | 1         | 1         | f <sub>PFD</sub> /4         |
| >320                   | 2         | 1         | f <sub>PFD</sub> /8         |

# **Clock Output Divider**

A 2-bit divider, CLKOUT\_DIV, is used to reduce the frequency seen at the output buffer and feedback divider. Its divide ratio, O, may be set to 1, 2, 4, or 8. Use the CLKOUT\_DIV bits found in REG0011 to directly program the O divide ratio. CLKOUT\_DIV is located inside the PLL loop. Therefore, any change to CLKOUT\_DIV results in the PLL losing lock for few loop time constants.

# Output Invert (INV\_CLKOUT)

The output invert (INV\_CLKOUT) is used to shift the output signal 180°. INV\_CLKOUT is located inside the PLL loop. Any change to INV\_CLKOUT results in the PLL losing lock for few loop time constants. Use the INV\_CLKOUT bit found in register REG0011 to directly program the output phase.

# Feedback Divider (N)

The feedback divider allows a division ratio in the PLL feedback path. Determine the division ratio by the N\_INT bit fields, Bits[11:0] (REG0011 and REG0010), the FRAC1WORD bit fields, Bits[24:0] (REG0015, REG0014, REG0013, and REG0012), the FRAC2WORD bit fields, Bits[23:0] (REG0019, REG0018, and REG0017), and the MOD2WORD bit fields, Bits[23:0] (REG001C, REG001B, and REG001A) values that this divider comprises together with the fixed modulus MOD1WORD, which is equal to 2<sup>25</sup>. The 24-bit variable MOD2WORD and the 25-bit fixed MOD1WORD forms a 49-bit combined fractional modulus. For the relationship between the N\_INT bit fields, Bits[11:0], the FRAC1WORD bit fields, Bits[24:0], MOD1WORD, the FRAC2WORD bit fields, Bits[23:0], the MOD2WORD bit fields, Bits[23:0], and the CLKOUT\_DIV bits, together with R, D, and the f<sub>REF</sub>, f<sub>PFD</sub>, f<sub>VCO</sub>, and f<sub>OUT</sub> frequencies, see the Output Frequency section.

# **RF Output Buffer**



Figure 42. Simplified RF Output Buffer Schematic

The low noise, differential output buffer in Figure 42 a differential output voltage. The output amplitude level and common mode voltage are settable with the CLK1\_OPWR bits and the CLK2\_OPWR bits. Each output can be either AC-coupled or DC-coupled and terminated with 100  $\Omega$  differentially. If a single-ended output is desired, each side of the output must be individually AC-coupled and terminated with 50  $\Omega$ .

The lowest four CLKx\_OPWR settings can be used without any external pull-up inductor. External inductors are required to achieve the higher output power. A 3.4 nH 0302 package or smaller inductor

is recommended. For more details on the evaluation board schematic, refer to the EVAL-ADF4368 user guide.

# LOOP FILTER DESIGN

A stable loop filter design requires care in selecting the loop filter components of the ADF4368. It is recommended to download and install ADIsimPLL<sup>™</sup> for loop filter design and simulation. ADIsimPLL<sup>™</sup> has an integrated tutorial for first time users and a help manual for more complex topics. There are also several ADIsimPLL training videos available on www.analog.com. After a loop filter is designed and simulated, it is recommended to verify the new loop filter using the ADF4368 evaluation hardware.

A full loop filter design tutorial is beyond the scope of this data sheet. However, some best practices are shown in the following lists. ADIsimPLL aids in defining and simulating these parameters. Any significant change to these items requires a new loop filter design.

A stable loop filter must meet the following criteria:

- ▶ Loop filter phase margin > 45°
- Loop filter bandwidth < f<sub>PFD</sub> ÷ 10

The desired loop filter bandwidth is determined by the following features of the ADF4368:

- ► I<sub>CP</sub>
- ► K<sub>VCO</sub>
- PFD frequency
- Reference input phase noise (see the Reference Phase Noise) section)
- Trade-off between minimizing jitter or settling time (see the Output Phase Noise Characteristics section and Equation 12, respectively)

The VTUNE pin has an internal 30 pf capacitor to GND that must be included in the loop filter design. ADIsimPLL<sup>™</sup> takes this internal capacitance into account automatically.

## **REFERENCE SOURCE CONSIDERATIONS**

## **Reference Input Network**

The reference input buffer of the ADF4368, shown in Figure 34, provides a flexible interface to either differential or single-ended frequency sources. Figure 43 to Figure 48 show recommended interfaces for different reference signal types. All Z<sub>0</sub> signal traces are 50  $\Omega$  transmission lines in Figure 43, Figure 44, Figure 45, Figure 46, Figure 47, and Figure 48.





8

#### Figure 43. Single-Ended 50 Ω Source (V<sub>REF</sub> < 2.6 V p-p)







SINGLE -ENDED CMOS





DIFFERENTIAL LVPECL





Figure 47. Differential LVDS



Figure 48. Differential CML

# **Reference Phase Noise**

The ADF4368 achieves an in-band normalized phase noise floor of  $L_{NORM}$  = -239 dBc/Hz in integer mode and  $L_{NORM}$  = -237 dBc/Hz typical in fractional mode. To calculate the equivalent input phase noise floor ( $L_{IN}$ ), use the following Equation 16.

$$L_{IN} = L_{NORM} + 10 \times \log_{10}(f_{REF}) \tag{16}$$

For example, a 100 MHz reference input frequency gives an  $L_{IN}$  of -157 dBc/Hz in fractional mode. The phase noise of the reference frequency source must be at least 6 dB less than  $L_{IN}$  to avoid impacting and increasing the overall system phase noise.

To maintain typical  $L_{NORM}$  performance, Table 7 provides criteria for selecting the optimal REF\_SEL setting based on the input reference signal type and amplitude.

# **OUTPUT PHASE NOISE CHARACTERISTICS**

## **In-Band Output Phase Noise**

The in-band phase noise floor ( $L_{OUT}$ ) produced at  $f_{OUT}$  can be calculated by Equation 17 and Equation 18.

$$L_{OUT} = L_{NORM} + 10 \times \log_{10}(f_{PFD}) + 20 \times \log_{10} \left(\frac{f_{OUT}}{f_{PFD}}\right)$$
(17)

Or

$$L_{OUT} = L_{NORM} + 10 \times \log_{10}(f_{PFD}) + 20 \times \log_{10}$$

$$\binom{N}{O}$$
(18)

## **Output Phase Noise Due to 1/f Noise**

In-band phase noise at very low offset frequencies can be influenced by the 1/f noise of the ADF4368, depending on the f<sub>PFD</sub>. Use the normalized in-band 1/f noise ( $L_{1/f}$ ) of -287 dBc/Hz with Equation 19 to approximate the output 1/f phase noise at a given frequency offset ( $f_{OFFSET}$ ).

$$L_{OUT(1/f)} = L_{1/f} + 20 \times \log_{10}(f_{OUT}) - 10$$
  
× log<sub>10</sub>(f<sub>OFFSET</sub>) (19)

Unlike the in-band noise floor ( $L_{OUT}$ ), the 1/f noise ( $L_{OUT(1/f)}$ ) does not change with  $f_{PFD}$  and is not constant over offset frequency. For an example of in-band phase noise for  $f_{PFD}$  equal to 100 MHz and

analog.com

500 MHz for integer mode, see Figure 49. The total phase noise is the summation of  $L_{OUT}$  and  $L_{OUT(1/f)}$ , calculated by Equation 20.

$$L_{OUT(TOTAL)} = 10 \times \log_{10} (10^{L_{OUT}/10} + 10^{L_{OUT}(1/f)/10})$$
(20)



Figure 49. Theoretical In-Band Phase Noise, four = 10 GHz





Figure 50. Power-Up and Initialization Sequence

The following steps describe the recommended power-up and initialization sequence of the ADF4368:

- Apply specified voltages to the 5V, 3.3V\_1, and 3.3V\_2 power supply groups. The ADF4368 is in full power-down mode at this point and SPI programming is not possible.
- Set the CE pin to a logic high. It is acceptable to connect the CE pin to the V3\_LDO pin via a pull-up resistor. Therefore, Step 1 and Step 2 are performed coincidentally.
- After waiting ≥200 µs for all SPI register bits to settle to their power-on reset state (POR), begin programming the SPI to configure the ADF4368 to a desired state. The following is the recommended SPI programming sequence:

- **a.** Set the SDO\_ACTIVE and CMOS\_OV bits to a desired state for future readback operations.
- b. Program all register addresses in descending order, REG0053 to REG0010. There are several required reserved register field settings provided in Table 19 that are required for proper device operation.
- 4. The ADF4368 remains in power-down mode until the PD\_ALL bit is programmed to 0. After PD\_ALL is disabled, wait at least 10 μs for the VCO calibration circuitry and other circuit blocks to settle before starting a VCO calibration.
- A write to REG0010 starts a VCO autocalibration. At this point, the device is fully operational and new frequencies can be programmed as often as desired. The following steps are information for PD\_ALL and CE pin.
- 6. Setting PD\_ALL to 1 power down the ADF4368, retaining the latest programmed SPI settings and full SPI programming capability.
- If only the state of PD\_ALL was modified in Step 6, setting PD\_ALL to 0 returns the ADF4368 to the frequency programmed in Step 5. After a 10 µs wait, all circuit blocks are completely powered up internally. This 10 µs wait does not include the frequency settling time associated with the loop filter bandwidth.
- **8.** Toggling the CE pin level causes the ADF4368 to return to full power-down mode and return the SPI registers to the POR state (see Step 2 and Step 3).

# **Programming Procedure**

There are two different methods to power up the ADF4368. The most commonly used method provided in the Standard Power-Up and Initialization Sequence, Automatic VCO Calibration section is mandatory on the initial device power-up.

The method provided in the Fast Power-Up and Initialization, Manually Programmed VCO Calibration Settings (Optional) section is an optional power-up procedure after the initial power-up.

# Standard Power-Up and Initialization Sequence, Automatic VCO Calibration

The following standard power-up and initialization sequence is the recommended procedure to power up and program the ADF4368:

- 1. Follow Step 1 through Step 5 in the Power-Up and Initialization Sequence section.
- It is optional to monitor the status of the VCO calibration bits, ADC\_BUSY and FSM\_BUSY. A VCO calibration is completed when ADC\_BUSY transitions from high to low, followed by FSM\_BUSY transitioning from high to low. Typical automatic VCO calibration times range from 3 ms to 9 ms.
- After the VCO calibration is complete, disable the VCO calibration clocks by setting EN\_DRCLK = EN\_DNCLK = EN\_ADC\_CLK = 0. Disabling the VCO calibration clocks reduces unwanted spurious content.

- **4.** The PLL is locked when the lock detector sets the LKDET pin and the LOCKED bit high.
- 5. When changing the frequency, do the following steps:
  - **a.** Program only the modified registers in the descending order.
  - **b.** Write REG0010 to start a new VCO autocalibration as the final step whether it is modified or not.

# Fast Power-Up and Initialization, Manually Programmed VCO Calibration Settings (Optional)

The purpose of the fast power-up and initialization method is to avoid the automatic VCO calibration time, which is typically 3 ms to 9 ms. For fixed clock frequency converter applications, automatic VCO calibration times are typically acceptable. For fast frequency hopping applications, much shorter lock time is needed.

The following list provides the steps to record the VCO calibration results on the initial power-up and then to manually program VCO calibration settings on subsequent power ups:

- 1. On initial power up, follow the procedure in the Standard Power-Up and Initialization Sequence, Automatic VCO Calibration section.
- Record calibration results from the VCO\_CORE, VCO\_BAND, and VCO\_BIAS bit fields for each target frequency and store the recorded results in memory. Note that each unique device and frequency combination generates different VCO\_CORE, VCO\_BAND, and VCO\_BIAS values.
- Subsequent power-up and initialization sequences (see the Power-Up and Initialization Sequence section) can bypass the automatic VCO calibration procedure by programming the override (O\_VCO\_CORE, O\_VCO\_BAND, and O\_VCO\_BIAS) and manual (M\_VCO\_CORE, M\_VCO\_BAND, and M\_VCO\_BIAS) VCO bits with the register settings provided in Table 18. All other bit fields are programmed as usual.
- 4. When changing the frequency, program only the modified registers in descending order.

#### Table 18. Manually Programmed VCO Calibration Settings

| Bit Fields | Value                        |
|------------|------------------------------|
| EN_AUTOCAL | 0x0                          |
| EN_DRCLK   | 0x0                          |
| EN_DNCLK   | 0x0                          |
| EN_ADC_CLK | 0x0                          |
| O_VCO_CORE | 0x1                          |
| O_VCO_BAND | 0x1                          |
| O_VCO_BIAS | 0x1                          |
| M_VCO_CORE | Program with recorded values |
| M_VCO_BAND | Program with recorded values |
| M_VCO_BIAS | Program with recorded values |

# Synchronizing Multiple ADF4368 Output Phases

Multiple ADF4368 can be synchronized in two ways, timed sync method through the SYNC pin and EZSync method through SPI programming, which eliminates the need for distributing the SYNC signal to all ADF4368 devices.

The ADF4368 also supports a unique feature called phase resync. After multiple devices are synchronized, any additional resyncing (for example, after a frequency change) is not needed because of the phase resync feature of the device. When the phase resync mode is enabled, the outputs are automatically synchronized when changing frequency (as long as R\_DIV bits is unchanged).

The synchronization relies on setting the output phase of the ADF4368 to a known phase relative to its reference input. Therefore, any phase difference in the reference inputs of multiple ADF4368 devices is directly reflected to the output. This residual phase difference can be compensated by using the phase adjust feature.

# **Timed Synchronization Method**

The traditional method by using the SYNC pin. A rising edge on the SYNC pin triggers the synchronization process and puts the device into a reset state. Then, with a falling edge on the SYNC pin, the synchronization process starts. The output phase is aligned to a known phase with respect to the reference input.

This method is straightforward, but requires an additional well aligned synchronization signal.

# EZSync Method

The EZSync method is useful when synchronizing a huge number of ADF4368 devices, such as massive multiple-input multiple-output (MIMO) or phase array applications. This method eliminates the need for an additional synchronization signal.

The main concept of the EZSync method is sending a synchronization request through the SPI by writing to the SW\_SYNC bit instead of the SYNC pin. The problems with sending the request over the SPI are that the SPI is a very slow protocol and does not have any time accuracy. Sending the request in the same reference period is also another challenge and even impossible for a huge number of ADF4368 devices used.

These problems are solved easily by stopping and starting the reference signals so that they leave enough setup and hold time for sending the request over the SPI. The reference signals must stop and start very accurately and without any glitch or without any runt pulse. The clock generation/distribution devices from Analog Devices, such as the LTC6953 or LTC6954, are recommended when using EZSync.

# Phase Resynchronization

In frequency hopping systems, another challenge is resynchronizing the multiple devices after changing frequency. This causes a dead time in operation and also causes process load on the controller.

The following sequence is the procedure for the Phase ReSync method:

- 1. Power up all ADF4368 devices
- 2. Program all ADF4368 devices to the same frequency
- **3.** Perform an initial synchronization (timed synchronization or EZSync)
- **4.** Enable phase resynchronization mode and perform the synchronization once more

From this point on, any frequency changes are automatically synchronized. No additional synchronization request is needed. The timing of this SPI command to change frequency is not critical. Therefore, the user can change the frequency of multiple devices at different times.

When Phase ReSync method is enabled, the value of the FRAC2WORD and MOD2WORD should be less than  $2^{17}$  (they should be considered as 17 bit).

# Phase Shift

The output phase of the ADF4368 can be shifted by the following two methods:

- ▶ Shifting the phase on SDM block
- Bleed current

The first method requires the SDM to be enabled and has a very high accuracy and very fine step size, which makes it very useful when the device is in fractional mode. The amount of phase adjust is set by the PHASE\_ADJUSTMENT bits (REG0024) and the output is shifted with this amount every time when PHASE\_ADJ (REG001F) is written.

When the ADF4368 is in integer mode, because SDM is disabled, this method does not work. Bleed current can be used to shift in this mode (see the Charge Pump Bleed Current Optimization section). In fractional mode, bleed current is mainly used for phase noise and spur optimization.

It is possible to enable the SDM and shift the output by using the first method. Note that this puts the device into fractional mode although the output is an integer multiple of  $f_{PFD}$ .

## POWER SUPPLY AND BYPASSING

The ADF4368 is a high performance, low noise device. Phase noise and spurious performance may be degraded by noisy power supplies. To achieve maximum performance and ensure that power supply noise does not degrade the performance of the ADF4368, it is recommended to use the Analog Devices low noise, high power supply rejection ratio (PSRR) regulators. Preferred regulators include the LT3045, ADM7150, and the ADM7151. Additional external supply bypass capacitors are also recommended. For more details, refer to the EVAL-ADF4368 evaluation board design.

# **REGISTER MAPS**

The reset column refers to the initial register state on power up or after the SOFT\_RESET bit is toggled. The bit columns provide bit names or the required programmed state of write-able reserved registers for proper device operation. Register bit fields labeled RESERVED are read only.

## Table 19. ADF4368 Register Summary

| Reg          | Bit 7             | Bit 6                                 | Bit 5                     | Bit 4            | Bit 3          | Bit 2                     | Bit 1          | Bit 0      | Reset | RW  |
|--------------|-------------------|---------------------------------------|---------------------------|------------------|----------------|---------------------------|----------------|------------|-------|-----|
| 0x00         | SOFT_RESET_R      | LSB_FIRST_R                           | ADDRESS_ASCE<br>NSION_R   | SDO_ACTIV<br>E_R | SDO_ACTIV<br>E | ADDRESS<br>_ASCENSI<br>ON | LSB_FIRS<br>T  | SOFT_RESET | 0x00  | R/W |
| 0x01         | SINGLE_INSTRUCT   | REG01_RSV6                            | MAIN_READBACK<br>_CONTROL | REG01_RSV<br>4   | RESERVED       | REG01_RS<br>V1            | REG01_R<br>SV0 | RESERVED   | 0x00  | R/W |
| 0x02         |                   | RESER                                 | /ED                       |                  |                | CHIF                      | STATUS         | 1          | 0x00  | R   |
| 0x03         |                   | RESER                                 | /ED                       |                  |                | CHI                       | P_TYPE         |            | 0x00  | R   |
| 0x04         |                   |                                       | Р                         | RODUCT_ID[7:0    | )]             |                           |                |            | 0x00  | R   |
| 0x05         |                   |                                       | PF                        | RODUCT_ID[15:    | 8]             |                           |                |            | 0x00  | R   |
| 0x06         |                   | PRODUCT_                              | GRADE                     |                  |                | DEVICE                    | _REVISION      |            | 0x00  | R   |
| 0x0A         |                   | SCRATCHPAD                            |                           |                  |                |                           |                |            | 0x00  | R/W |
| 0x0B         |                   | SPI_REVISION (                        |                           |                  |                |                           |                |            | 0x00  | R   |
| 0x0C         |                   |                                       | ١                         | /ENDOR_ID[7:0    | ]              |                           |                |            | 0x56  | R   |
| 0x0D         |                   |                                       | V                         | ENDOR_ID[15:8    | 3]             |                           |                |            | 0x04  | R   |
| 0x0F         |                   |                                       | RESERV                    | /ED              |                |                           |                | 0          | 0x00  | R/W |
| 0x10         |                   | N_INT[7:0] (                          |                           |                  |                |                           |                | 0x80       | R/W   |     |
| 0x11         | CLKOU             | JT_DIV                                | INT_MODE                  | INV_CLKOUT       |                | N_I                       | NT[11:8]       |            | 0x00  | R/W |
| 0x12         |                   |                                       | F                         | RAC1WORD[7:0     | )]             |                           |                |            | 0x00  | R/W |
| 0x13         |                   |                                       | FF                        | RAC1WORD[15:     | 8]             |                           |                |            | 0x00  | R/W |
| 0x14         | FRAC1WORD[23:16]  |                                       |                           |                  |                |                           |                | 0x00       | R/W   |     |
| 0.45         |                   |                                       |                           |                  |                |                           |                | 0.00       |       |     |
| 0x15         | M_VCO             | M_VCO_CORE M_VCO_BIAS V FRAC1WORD[24] |                           |                  |                |                           |                |            | 0x00  |     |
| 0x10         |                   |                                       | C                         |                  | 1              |                           |                |            | 0x00  |     |
| 0x17<br>0x18 |                   |                                       | F                         |                  | رار<br>18      |                           |                |            | 0x00  | R/W |
| 0v10         |                   |                                       | FR                        |                  | 0]<br>16]      |                           |                |            | 0x00  | R/W |
| 0x13         |                   |                                       | N                         |                  | 10]            |                           |                |            | 0x00  | R/W |
| 0x1R         |                   |                                       | M                         |                  | 3              |                           |                |            | 0x00  | R/W |
| 0x1C         |                   |                                       | M                         |                  | 6]             |                           |                |            | 0x00  | R/W |
| 0x1D         |                   |                                       |                           | BI FFD 1[7:0]    | •]             |                           |                |            | 0x00  | R/W |
| 0x1E         | EN_PHASE_RESY     | EN REF RST                            | TIMED SYNC                |                  |                | BLEED II12:               | 81             |            | 0x00  | R/W |
| 0x1F         | SW SYNC           | PHASE ADJ                             | BLEED POL                 | EN BLEED         |                |                           | CP I           |            | 0x00  | R/W |
| 0x20         | EN AUTOCAL        | EN RDBLR                              | _                         | _                | R DI           | V                         | _              |            | 0x01  | R/W |
| 0x21         |                   |                                       | Pł                        | HASE WORD[7:     | 0]             |                           |                |            | 0x00  | R/W |
| 0x22         |                   |                                       | PH                        | ASE WORD[15      | :8]            |                           |                |            | 0x00  | R/W |
| 0x23         | PHASE WORD[23:16] |                                       |                           |                  |                |                           |                | 0x00       | R/W   |     |
| 0x24         | PHASE ADJUSTMENT  |                                       |                           |                  |                |                           |                | 0x00       | R/W   |     |
| 0x25         | RESYNC WAITI7:01  |                                       |                           |                  |                |                           |                | 0x00       | R/W   |     |
| 0x26         |                   |                                       | RE                        | SYNC_WAIT[15     | :8]            |                           |                |            | 0x00  | R/W |
| 0x27         |                   |                                       | RES                       | SYNC_WAIT[23:    | 16]            |                           |                |            | 0x00  | R/W |
| 0x28         | 0                 | LSB_P1                                | VAR_MOD_EN                | 0                | 0              | 0                         | 0              | 0          | 0x00  | R/W |
| 0x29         |                   | CLK2_OF                               | PWR                       | 1                |                | CLK                       | 1_OPWR         |            | 0x00  | R/W |
| 0x2A         | 0                 | PHASE_ADJ_PO<br>L                     | 0                         | PD_SYNC          | 0              | PD_RDET                   | 0              | 0          | 0x04  | R/W |

|  | Data | Sheet |
|--|------|-------|
|--|------|-------|

## **REGISTER MAPS**

# Table 19. ADF4368 Register Summary (Continued)

| Reg    | Bit 7       | Bit 6       | Bit 5    | Bit 4        | Bit 3         | Bit 2    | Bit 1      | Bit 0      | Reset | RW  |
|--------|-------------|-------------|----------|--------------|---------------|----------|------------|------------|-------|-----|
|        |             | -           | _        |              |               |          | PD_CLKO    |            |       |     |
| 0x2B   | PD_ALL      | 0           | 0        | 0            | PD_LD         | 0        | UT1        | PD_CLKOUT2 | 0x83  | R/W |
| 0x2C   |             | LDWIN_PW    |          |              |               | LD_COUNI | •          |            | 0x00  | R/W |
| 0x2D   | EN_DNCLK    | EN_DRCLK    | EN_LOL   | EN_LDWIN     | 0             | RSI_LD   | 0          | 1          | 0x00  | R/W |
| 0v2⊑   |             | MUXO        | ШТ       |              | 0             | EN_CPIE  | CP_DOW     |            | 0×00  | P/M |
| 0x2E   | BST REF     |             |          | ٥            | 0             | 1        | 1          | 1          | 0x00  | R/W |
| 0x20   |             |             |          |              | 0             | 1        |            |            | 0x00  | R/W |
| 0,00   | MOTE_NOLK   | 0           |          |              |               |          |            |            | 0,00  |     |
| 0x31   |             | SYNC DEL    |          | RST SYS      | K             | 0        | 0          | 1          | 0x00  | R/W |
| 0x32   | 1           | 1           | 0        | 1            | 0             | 0        | 1          | 1          | 0x00  | R/W |
| 0x33   | 0           | 0           | 1        | 1            | 0             | 0        | 1          | 0          | 0x00  | R/W |
| 0x34   | 1           | 0           | 0        | 1            | 1             | 0        | 0          | 0          | 0x00  | R/W |
|        |             |             |          |              |               | DCLK_MO  |            |            |       |     |
| 0x35   | 0           | 0           | 0        | 0            | 0             | DE       | 0          | 0          | 0x00  | R/W |
| 0x36   | CLKODIV_DB  | DCLK_DIV_DB | 0        | 1            | 0             | 1        | 1          | 0          | 0x00  | R/W |
| 0x37   |             |             | 1        | CO_BAND_DIV  | 1             |          |            |            | 0x00  | R/W |
| 0x38   |             |             | SYNTH    | LOCK_TIMEO   | UT[7:0]       |          |            |            | 0x00  | R/W |
| 0x39   | O_VCO_DB    |             |          | SYNTH_LOO    | CK_TIMEOUT[14 | :8]      |            |            | 0x00  | R/W |
| 0x3A   |             |             | VCO      | _ALC_TIMEOUT | [7:0]         |          |            |            | 0x00  | R/W |
| 0x3B   | DEL_CTRL_DB |             |          | VCO_ALC      | _TIMEOUT[14:8 | ]        |            |            | 0x00  | R/W |
| 0x3C   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x3D   | 1           | 1           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x3E   |             |             |          | ADC_CLK_DIV  |               |          |            |            | 0x00  | R/W |
| 0x3F   | EN_ADC_CNV  | 0           | 0        | 0            | 0             | 0        | EN_ADC     | ADC_A_CONV | 0x00  | R/W |
| 0x40   | 0           | 0           | ML       | JTE_CLKOUT2  |               |          | MUTE_CLK   | COUT1      | 0x00  | R/W |
| 0x41   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x42   | 0           | 0           | 0        | 0            | 1             | 0        | 0          | 1          | 0x00  | R/W |
| 0x43   | 0           | ADC_CLK_SEL | 0        | 0            | 1             | 0        | 0          | 1          | 0x00  | R/W |
| 0x44   | 0           | 0           | 0        | 1            | 1             | 0        | 0          | 0          | 0x00  | R/W |
| 0x45   | 0           | 0           | 0        | 0            | 1             | 0        | 0          | 0          | 0x00  | R/W |
| 0x46   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x47   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x48   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x49   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R   |
| 0x4A   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0x4B   | 0           | 1           | 0        | 1            | 1             | 1        | 0          | 1          | 0x00  | R/W |
| 0x4C   | 0           | 0           | 1        | 0            | 1             | 0        | 1          | 1          | 0x00  | R/W |
| 0x4D   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| 0.45   |             |             |          | NIV /4       | O_VCO_BAN     | 0_VC0_C  | O_VCO_B    |            | 000   |     |
| 0x4E   | 0           | 0           | DCLK_L   |              | D             | ORE      | IAS        | 0          | 000   | R/W |
| 0x4F   | 0           | 0           | 0        | 0            | 0             | 0        | 0          | 0          | 0x00  | R/W |
| UX50   | 0           | 0           | 0        | U            | 0             | 0        | 0          | 0          | 000   | R/W |
| UX51   | U           | 0           | U        | U            | 0             | 0        | 0          | 0          | 000   | R/W |
| UX52   | U           | U           | U        |              | U             | U        | U          | U          | 000   | K/W |
| 0x53   | 0           | PD SYNC MON | SYNC SEL | MON          | 0             | 1        | 0          | 1          | 0x00  | R/W |
| 0x54   | •<br>       |             | RESERV   | /FD          | •             |          | , <b>,</b> | ADC ST CNV | 0x00  | R/W |
| 5/10 1 |             |             | NEOEN(   |              |               |          |            |            | 0,000 |     |

# **REGISTER MAPS**

# Table 19. ADF4368 Register Summary (Continued)

| Reg  | Bit 7                                                     | Bit 6                                 | Bit 5        | Bit 4   | Bit 3  | Bit 2   | Bit 1   | Bit 0  | Reset | RW |
|------|-----------------------------------------------------------|---------------------------------------|--------------|---------|--------|---------|---------|--------|-------|----|
| 0x55 | 0                                                         | 0                                     | 0            | 0       | 0      | 0       | 0       | 0      | 0x00  | R  |
| 0x56 | 0                                                         | 0                                     | 0            | 0       | 0      | 0       | 0       | 0      | 0x00  | R  |
| 0x57 | 0                                                         | 0                                     | 0            | 0       | 0      | 0       | 0       | 0      | 0x00  | R  |
|      |                                                           |                                       |              |         |        | ADC_BUS | FSM_BUS |        |       |    |
| 0x58 | EN_CLK2                                                   | EN_CLK1                               | SYNC_OK      | 0       | REF_OK | Y       | Y       | LOCKED | 0x00  | R  |
| 0x59 | 0                                                         | 0                                     | 0            | 0       | 0      | 0       | 0       | 0      | 0x00  | R  |
| 0x5A | RESERVED VCO_COR                                          |                                       |              |         |        |         | CO_CORE | 0x00   | R     |    |
| 0x5B | CHIP_TEMP[7:0]                                            |                                       |              |         |        |         |         | 0x00   | R     |    |
| 0x5C |                                                           |                                       | CHIP_TEMP[8] |         |        |         |         |        |       |    |
| 0x5D | 0                                                         | 0                                     | 0            | 0       | 0      | 0       | 0       | 0      | 0x00  | R  |
| 0x5E |                                                           | I                                     | I            | VCO_BAN | ND     |         |         |        | 0x00  | R  |
| 0x5F | 0                                                         | 0                                     | 0            | 0       | 0      | 0       | 0       | 0      | 0x00  | R  |
| 0x60 |                                                           | RES                                   | ERVED        |         |        | VC      | O_BIAS  |        | 0x00  | R  |
| 0x61 |                                                           | RES                                   | ERVED        |         | 0      | 0       | 0       | 0      | 0x00  | R  |
| 0x62 | 0 0 0 0 0 VCO_B/<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                                       |              |         |        | 0       | 0       | 0      | 0x00  | R  |
| 0x63 |                                                           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |              |         | N      |         |         |        | 0x00  | R  |

## Address: 0x00, Reset: 0x00, Name: REG0000





#### Table 20. Bit Descriptions for REG0000

| Bits | Bit Name            | Description                                                           | Reset | Access |
|------|---------------------|-----------------------------------------------------------------------|-------|--------|
| 7    | SOFT_RESET_R        | Repeat of SOFT_RESET.                                                 | 0x0   | R/W    |
| 6    | LSB_FIRST_R         | Repeat of LSB_FIRST.                                                  | 0x0   | R/W    |
| 5    | ADDRESS_ASCENSION_R | Repeat of ADDRESS_ASCENSION.                                          | 0x0   | R/W    |
| 4    | SDO_ACTIVE_R        | Repeat of SDO_ACTIVE.                                                 | 0x0   | R/W    |
| 3    | SDO_ACTIVE          | Choose Between 3-Wire or 4-Wire Operation.                            | 0x0   | R/W    |
|      |                     | 0: 3-wire                                                             |       |        |
|      |                     | 1: 4-wire SPI (enables SDO and SDIO becomes an input only)            |       |        |
| 2    | ADDRESS_ASCENSION   | Address Ascension When Streaming.                                     | 0x0   | R/W    |
|      |                     | 0: address auto-decrements when streaming.                            |       |        |
|      |                     | 1: address auto-increments when streaming.                            |       |        |
| 1    | LSB_FIRST           | I/O Data Oriented LSB First.                                          | 0x0   | R/W    |
|      |                     | 0: MSB first.                                                         |       |        |
|      |                     | 1: LSB first.                                                         |       |        |
| 0    | SOFT_RESET          | Reset SPI Registers Except REG0000 to POR State. Self-clearing reset. | 0x0   | R/W    |
|      |                     | 0: Normal operation.                                                  |       |        |
|      |                     | 1: Soft reset.                                                        |       |        |

## Address: 0x01, Reset: 0x00, Name: REG0001





#### Table 21. Bit Descriptions for REG0001

| Bits | Bit Name           | Description                | Reset | Access |
|------|--------------------|----------------------------|-------|--------|
| 7    | SINGLE_INSTRUCTION | Single Instruction.        | 0x0   | R/W    |
|      |                    | 0: SPI streaming enabled.  |       |        |
|      |                    | 1: SPI streaming disabled. |       |        |
| 6    | REG01_RSV6         | Reserved.                  | 0x0   | R/W    |

#### Table 21. Bit Descriptions for REG0001 (Continued)

| Bits | Bit Name              | Description                                         | Reset | Access |
|------|-----------------------|-----------------------------------------------------|-------|--------|
| 5    | MAIN_READBACK_CONTROL | Main/Subordinate Readback Control.                  | 0x0   | R/W    |
|      |                       | 0: double buffering, readback subordinate register. |       |        |
|      |                       | 1: double buffering, readback main register.        |       |        |
| 4    | REG01_RSV4            | Reserved.                                           | 0x0   | R/W    |
| 3    | RESERVED              | Reserved.                                           | 0x0   | R      |
| 2    | REG01_RSV1            | Reserved.                                           | 0x0   | R/W    |
| 1    | REG01_RSV0            | Reserved.                                           | 0x0   | R/W    |
| 0    | RESERVED              | Reserved.                                           | 0x0   | R      |

## Address: 0x02, Reset: 0x00, Name: REG0002





#### Table 22. Bit Descriptions for REG0002

| Bits  | Bit Name    | Description | Reset | Access |
|-------|-------------|-------------|-------|--------|
| [7:4] | RESERVED    | Reserved.   | 0x0   | R      |
| [3:0] | CHIP_STATUS | Not Used.   | 0x0   | R      |

## Address: 0x03, Reset: 0x00, Name: REG0003





#### Table 23. Bit Descriptions for REG0003

| Bits  | Bit Name  | Description       | Reset | Access |
|-------|-----------|-------------------|-------|--------|
| [7:4] | RESERVED  | Reserved.         | 0x0   | R      |
| [3:0] | CHIP_TYPE | Chip Type = 0x06. | 0x0   | R      |

#### Address: 0x04, Reset: 0x00, Name: REG0004



Figure 55.

#### Table 24. Bit Descriptions for REG0004

| Bits  | Bit Name        | Description          | Reset | Access |
|-------|-----------------|----------------------|-------|--------|
| [7:0] | PRODUCT_ID[7:0] | Product ID = 0x0007. | 0x0   | R      |

Address: 0x05, Reset: 0x00, Name: REG0005



[7:0] PRODUCT\_ID[15:8] (R) -Product ID = 0x0005

#### Figure 56.

#### Table 25. Bit Descriptions for REG0005

| Bits  | Bit Name         | Description          | Reset | Access |
|-------|------------------|----------------------|-------|--------|
| [7:0] | PRODUCT_ID[15:8] | Product ID = 0x0007. | 0x0   | R      |

#### Address: 0x06, Reset: 0x00, Name: REG0006



#### Figure 57.

#### Table 26. Bit Descriptions for REG0006

| Bits  | Bit Name        | Description                       | Reset | Access |
|-------|-----------------|-----------------------------------|-------|--------|
| [7:4] | PRODUCT_GRADE   | Product Grade = 0x0 (Not Used).   | 0x0   | R      |
| [3:0] | DEVICE_REVISION | Device Revision = 0x0 (Not Used). | 0x0   | R      |

Address: 0x0A, Reset: 0x00, Name: REG000A



[7:0] SCRATCHPAD (R/W) SPI SCRATCHPAD

Figure 58.

| Table 27. Bit Descriptions for REG000A |            |                 |       |        |  |
|----------------------------------------|------------|-----------------|-------|--------|--|
| Bits                                   | Bit Name   | Description     | Reset | Access |  |
| [7:0]                                  | SCRATCHPAD | SPI SCRATCHPAD. | 0x0   | R/W    |  |

## Address: 0x0B, Reset: 0x00, Name: REG000B



Figure 59.

#### Table 28. Bit Descriptions for REG000B

| Bits  | Bit Name     | Description          | Reset | Access |
|-------|--------------|----------------------|-------|--------|
| [7:0] | SPI_REVISION | SPI Revision = 0x01. | 0x0   | R      |

Address: 0x0C, Reset: 0x56, Name: REG000C

analog.com

# **REGISTER DETAILS**

Data Sheet

# 0 1 0 1 0 1 1 0

[7:0] VENDOR\_ID[7:0] (R) Vendor ID = 0x0456

Figure 60.

| Bits  | Bit Name       | Description         | Reset | Access |
|-------|----------------|---------------------|-------|--------|
| [7:0] | VENDOR_ID[7:0] | Vendor ID = 0x0456. | 0x56  | R      |

Address: 0x0D, Reset: 0x04, Name: REG000D



Figure 61.

#### Table 30. Bit Descriptions for REG000D

| Bits  | Bit Name        | Description         | Reset | Access |
|-------|-----------------|---------------------|-------|--------|
| [7:0] | VENDOR_ID[15:8] | Vendor ID = 0x0456. | 0x4   | R      |

#### Address: 0x0F, Reset: 0x00, Name: REG000F



Figure 62.

#### Table 31. Bit Descriptions for REG000F

| Bits  | Bit Name   | Description | Reset | Access |
|-------|------------|-------------|-------|--------|
| [7:1] | RESERVED   | Reserved.   | 0x0   | R      |
| 0     | REG0F_RSV0 | Reserved.   | 0x0   | R/W    |

#### Address: 0x10, Reset: 0x80, Name: REG0010



12 Bit Integer Word

Figure 63.

#### Table 32. Bit Descriptions for REG0010

| Bits  | Bit Name   | Description                                                                        | Reset | Access |
|-------|------------|------------------------------------------------------------------------------------|-------|--------|
| [7:0] | N_INT[7:0] | 12 Bit Integer Word. Writing to Reg10 triggers autocalibration when EN_AUTOCAL = 1 | 0x80  | R/W    |

Address: 0x11, Reset: 0x00, Name: REG0011



**Data Sheet** 



Figure 64.

#### Table 33. Bit Descriptions for REG0011

| Bits  | Bit Name    | Description                                                                        | Reset | Access |
|-------|-------------|------------------------------------------------------------------------------------|-------|--------|
| [7:6] | CLKOUT_DIV  | Clk Output Divider.                                                                | 0x0   | R/W    |
|       |             | 00: Divide by 1.                                                                   |       |        |
|       |             | 01: Divide by 2.                                                                   |       |        |
|       |             | 10: Divide by 4.                                                                   |       |        |
|       |             | 11: Divide by 8.                                                                   |       |        |
| 5     | INT_MODE    | Integer Mode Enabler.                                                              | 0x0   | R/W    |
|       |             | 0: Fractional Mode.                                                                |       |        |
|       |             | 1: Integer Mode.                                                                   |       |        |
| 4     | INV_CLKOUT  | Invert CLK1, CLK2.                                                                 | 0x0   | R/W    |
|       |             | 0: RFCLK1, RFCLK2 Not Inverted.                                                    |       |        |
|       |             | 1: RFCLK1, RFCLK2 Inverted.                                                        |       |        |
| [3:0] | N_INT[11:8] | 12 Bit Integer Word. Writing to Reg10 triggers autocalibration when EN_AUTOCAL = 1 | 0x0   | R/W    |

## Address: 0x12, Reset: 0x00, Name: REG0012



[7:0] FRAC1WORD[7:0] (R/W) 25 Bit Frac1 Word

#### Figure 65.

| Table 34. | able 34. Bit Descriptions for REG0012 |                    |       |        |  |  |  |  |
|-----------|---------------------------------------|--------------------|-------|--------|--|--|--|--|
| Bits      | Bit Name                              | Description        | Reset | Access |  |  |  |  |
| [7:0]     | FRAC1WORD[7:0]                        | 25 Bit Frac1 Word. | 0x0   | R/W    |  |  |  |  |

## Address: 0x13, Reset: 0x00, Name: REG0013



[7:0] FRAC1W ORD[15:8] (R/W) -25 Bit Frac1 Word

Figure 66.

#### Table 35. Bit Descriptions for REG0013

| Bits  | Bit Name        | Description        | Reset | Access |
|-------|-----------------|--------------------|-------|--------|
| [7:0] | FRAC1WORD[15:8] | 25 Bit Frac1 Word. | 0x0   | R/W    |

Address: 0x14, Reset: 0x00, Name: REG0014



[7:0] FRAC1WORD[23:16] (R/W) -25 Bit Frac1 Word

#### Figure 67.

#### Table 36. Bit Descriptions for REG0014

| Bits  | Bit Name         | Description        | Reset | Access |
|-------|------------------|--------------------|-------|--------|
| [7:0] | FRAC1WORD[23:16] | 25 Bit Frac1 Word. | 0x0   | R/W    |

## Address: 0x15, Reset: 0x00, Name: REG0015



#### Figure 68.

#### Table 37. Bit Descriptions for REG0015

| Bits  | Bit Name      | Description                                      | Reset | Access |
|-------|---------------|--------------------------------------------------|-------|--------|
| [7:6] | M_VCO_CORE    | Selects VCO Core When O_VCO_CORE = 1.            | 0x0   | R/W    |
|       |               | 00: VCO 0 Lowest Frequency.                      |       |        |
|       |               | 01: VCO 1.                                       |       |        |
|       |               | 10: VCO 2.                                       |       |        |
|       |               | 11: VCO 3 Highest Frequency.                     |       |        |
| [5:2] | M_VCO_BIAS    | Sets VCO Bias When O_VCO_BIAS = 1.               | 0x0   | R/W    |
|       |               | 0000: Bias = 0.                                  |       |        |
|       |               | 0001: Bias = 1.                                  |       |        |
|       |               | 0010: Bias = 2.                                  |       |        |
|       |               | 0011: Bias = 3.                                  |       |        |
|       |               | 0100: Bias = 4.                                  |       |        |
|       |               | 0101: Bias = 5.                                  |       |        |
|       |               | 0110: Bias = 6.                                  |       |        |
|       |               | 0111: Bias = 7.                                  |       |        |
|       |               | 1000: Bias = 8.                                  |       |        |
|       |               | 1001: Bias = 9.                                  |       |        |
|       |               | 1010: Bias = 10.                                 |       |        |
|       |               | 1011: Bias = 11.                                 |       |        |
|       |               | 1100: Bias = 12.                                 |       |        |
|       |               | 1101: Bias = 13.                                 |       |        |
|       |               | 1110: Bias = 14.                                 |       |        |
|       |               | 1111: Bias = 15.                                 |       |        |
| 1     | CMOS_OV       | Logic High Voltage for MUXOUT, LKDET, SDO, SDIO. | 0x0   | R/W    |
| 1     |               | 0: 1.8 V Logic.                                  |       |        |
|       |               | 1: 3.3 V Logic.                                  |       |        |
| 0     | FRAC1WORD[24] | 25 Bit Frac1 Word.                               | 0x0   | R/W    |

## Address: 0x16, Reset: 0x00, Name: REG0016



[7:0] M\_VCO\_BAND (R/W) \_\_\_\_\_\_\_ Selects Band Within Core When O\_VCO\_BAND=1

#### Figure 69.

#### Table 38. Bit Descriptions for REG0016

| Bits  | Bit Name   | Description                                                                                | Reset | Access |
|-------|------------|--------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | M_VCO_BAND | Selects Band Within Core When O_VCO_BAND = 1.255 = lowest Frequency, 0 = highest Frequency | 0x0   | R/W    |

#### Address: 0x17, Reset: 0x00, Name: REG0017



24 Bits Frac2 Word

#### Figure 70.

#### Table 39. Bit Descriptions for REG0017

| Bits  | Bit Name       | Description         | Reset | Access |
|-------|----------------|---------------------|-------|--------|
| [7:0] | FRAC2WORD[7:0] | 24 Bits Frac2 Word. | 0x0   | R/W    |

#### Address: 0x18, Reset: 0x00, Name: REG0018



24 Bits Frac2 Word

Figure 71.

#### Table 40. Bit Descriptions for REG0018

| Bits  | Bit Name        | Description         | Reset | Access |
|-------|-----------------|---------------------|-------|--------|
| [7:0] | FRAC2WORD[15:8] | 24 Bits Frac2 Word. | 0x0   | R/W    |

#### Address: 0x19, Reset: 0x00, Name: REG0019



[7:0] FRAC2WORD[23:16] (R/W 24 Bits Frac2Word

#### Figure 72.

#### Table 41. Bit Descriptions for REG0019

| Bits  | Bit Name         | Description        | Reset | Access |
|-------|------------------|--------------------|-------|--------|
| [7:0] | FRAC2WORD[23:16] | 24 Bits Frac2 Word | 0x0   | R/W    |

#### Address: 0x1A, Reset: 0x00, Name: REG001A

7 6 5 4 3 2 1 0

[7:0] MOD2WORD[7:0] (R/W) ------

24 Bits Mod 2 Word

Figure 73.

#### Table 42. Bit Descriptions for REG001A

| Bits  | Bit Name      | Description        | Reset | Access |
|-------|---------------|--------------------|-------|--------|
| [7:0] | MOD2WORD[7:0] | 24 Bits Mod2 Word. | 0x0   | R/W    |

Address: 0x1B, Reset: 0x00, Name: REG001B

| 0 0 0 0 0 0 0 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-----------------|---|---|---|---|---|---|---|---|
|                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Figure 74.

#### Table 43. Bit Descriptions for REG001B

| Bits  | Bit Name       | Description        | Reset | Access |
|-------|----------------|--------------------|-------|--------|
| [7:0] | MOD2WORD[15:8] | 24 Bits Mod2 Word. | 0x0   | R/W    |

## Address: 0x1C, Reset: 0x00, Name: REG001C



24 Bits Mod2 Word

Figure 75.

#### Table 44. Bit Descriptions for REG001C

| Bits  | Bit Name        | Description       | Reset | Access |
|-------|-----------------|-------------------|-------|--------|
| [7:0] | MOD2WORD[23:16] | 24 Bits Mod2 Word | 0x0   | R/W    |

## Address: 0x1D, Reset: 0x00, Name: REG001D





#### Table 45. Bit Descriptions for REG001D

| Bits  | Bit Name     | Description                                                                               | Reset | Access |
|-------|--------------|-------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | BLEED_I[7:0] | 13 Bit Bleed Current Setting. 4-bit MSB for coarse setting and 9-bit LSB for fine setting | 0x0   | R/W    |

## Address: 0x1E, Reset: 0x00, Name: REG001E





#### Table 46. Bit Descriptions for REG001E

| Bits  | Bit Name        | Description                                                                               | Reset | Access |
|-------|-----------------|-------------------------------------------------------------------------------------------|-------|--------|
| 7     | EN_PHASE_RESYNC | Enable the Phase ReSync Mode.                                                             | 0x0   | R/W    |
| 6     | EN_REF_RST      | SW_SYNC or Pin Sync Resets the R_DIV.                                                     | 0x0   | R/W    |
| 5     | TIMED_SYNC      | Retime the synchronization signal with reference input clock.                             | 0x0   | R/W    |
|       |                 | 0: RDIV are Reset Asynchronously.                                                         |       |        |
|       |                 | 1: The synchronization signal is retimed with reference input clock.                      |       |        |
| [4:0] | BLEED_I[12:8]   | 13 Bit Bleed Current Setting. 4-bit MSB for coarse setting and 9-bit LSB for fine setting | 0x0   | R/W    |

# Address: 0x1F, Reset: 0x00, Name: REG001F





#### Table 47. Bit Descriptions for REG001F

| Bits  | Bit Name  | Description                                                          | Reset | Access |
|-------|-----------|----------------------------------------------------------------------|-------|--------|
| 7     | SW_SYNC   | Software SYNC Request.                                               | 0x0   | R/W    |
| 6     | PHASE_ADJ | Apply the Phase Adjust.                                              | 0x0   | R/W    |
| 5     | BLEED_POL | Bleed Polarity.                                                      | 0x0   | R/W    |
|       |           | 0: Current Sink.                                                     |       |        |
|       |           | 1: Current Source.                                                   |       |        |
| 4     | EN_BLEED  | Enable Bleed Current.                                                | 0x0   | R/W    |
|       |           | 0: Bleed Current Disabled.                                           |       |        |
|       |           | 1: Bleed Current Enabled.                                            |       |        |
| [3:0] | CP_I      | Charge Pump Current. For corresponding current values, see Table 11. | 0x0   | R/W    |

## Address: 0x20, Reset: 0x01, Name: REG0020



Figure 79.

#### Table 48. Bit Descriptions for REG0020

| Bits  | Bit Name   | Description                  | Reset | Access |
|-------|------------|------------------------------|-------|--------|
| 7     | EN_AUTOCAL | Enable VCO Calibration.      | 0x0   | R/W    |
|       |            | 0: VCO Calibration Disabled. |       |        |
|       |            | 1: VCO Calibration Enabled.  |       |        |
| 6     | EN_RDBLR   | Enable Reference Doubler.    | 0x0   | R/W    |
|       |            | 0: Doubler Disabled.         |       |        |
|       |            | 1: Doubler Enabled.          |       |        |
| [5:0] | R_DIV      | 6 Bit R-Divider.             | 0x1   | R/W    |

# Address: 0x21, Reset: 0x00, Name: REG0021



[7:0] PHASE\_WORD[7:0] (R/W) 24 Bits Phase Word

#### Figure 80.

| Table 49. | Bit Descriptions for REG0021 |  |
|-----------|------------------------------|--|
|           |                              |  |

| Bits  | Bit Name        | Description         | Reset | Access |
|-------|-----------------|---------------------|-------|--------|
| [7:0] | PHASE_WORD[7:0] | 24 Bits Phase Word. | 0x0   | R/W    |

Address: 0x22, Reset: 0x00, Name: REG0022

|                              | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------------------------------|---|---|---|---|---|---|---|---|
|                              | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                              | Έ |   |   |   |   |   |   |   |
| [7:0] PHASE_WORD[15:8] (R/W) |   |   |   |   | J |   |   |   |
| 24 Bits Phase Word           |   |   |   |   |   |   |   |   |

Phase Word

Figure 81.

#### Table 50. Bit Descriptions for REG0022

. ..

| Bits  | Bit Name         | Description         | Reset | Access |
|-------|------------------|---------------------|-------|--------|
| [7:0] | PHASE_WORD[15:8] | 24 Bits Phase Word. | 0x0   | R/W    |

Address: 0x23, Reset: 0x00, Name: REG0023



[7:0] PHASE\_WORD[23:16] (R/W) 24 Bits Phase Word

#### Figure 82.

| Table 51. Bit Descriptions for REGU023 |                   |                     |       |        |  |  |  |
|----------------------------------------|-------------------|---------------------|-------|--------|--|--|--|
| Bits                                   | Bit Name          | Description         | Reset | Access |  |  |  |
| [7:0]                                  | PHASE_WORD[23:16] | 24 Bits Phase Word. | 0x0   | R/W    |  |  |  |

## Address: 0x24, Reset: 0x00, Name: REG0024

. \_\_\_.



Figure 83.

#### Table 52. Bit Descriptions for REG0024

| Bits  | Bit Name         | Description                                                                                             | Reset | Access |
|-------|------------------|---------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | PHASE_ADJUSTMENT | Determines the Amount of Phase Adjustment to Be Applied. PHASE_ADJUSTMENT = Phase(deg) × $2^{12}$ /360. | 0x0   | R/W    |

## Address: 0x25, Reset: 0x00, Name: REG0025

- . . - . - . .



#### Figure 84.

#### Table 53. Bit Descriptions for REG0025

| Bits  | Bit Name         | Description                                                                                                                                  | Reset | Access |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | RESYNC_WAIT[7:0] | Resynchronization Waiting Time. Sets the Waiting Time After the Write of the Register 10 to Apply the Resynchronization (RESYNC_WAIT × PFD). | 0x0   | R/W    |

## Address: 0x26, Reset: 0x00, Name: REG0026



[7:0] RESYNC\_WAIT[15:8] (R/W) — Resynchronization Waiting Time

# Figure 85.

#### Table 54. Bit Descriptions for REG0026

| Bits  | Bit Name          | Description                                                                                                                                     | Reset | Access |
|-------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | RESYNC_WAIT[15:8] | Resynchronization Waiting Time. Sets the Waiting Time After the Write of the Register 10 to Apply the<br>Resynchronization (RESYNC_WAIT × PFD). | 0x0   | R/W    |

## Address: 0x27, Reset: 0x00, Name: REG0027



[7:0] RESYNC\_WAIT[23:16] (R/W) Resynchronization Waiting Time

Figure 86.

#### Table 55. Bit Descriptions for REG0027

| Bits  | Bit Name           | Description                                                                                                                                  | Reset | Access |
|-------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | RESYNC_WAIT[23:16] | Resynchronization Waiting Time. Sets the Waiting Time After the Write of the Register 10 to Apply the Resynchronization (RESYNC_WAIT × PFD). | 0x0   | R/W    |

#### Address: 0x28, Reset: 0x00, Name: REG0028





#### Table 56. Bit Descriptions for REG0028

| Bits | Bit Name   | Description                       | Reset | Access |
|------|------------|-----------------------------------|-------|--------|
| 7    | REG28_RSV1 | Reserved.                         | 0x0   | R/W    |
| 6    | LSB_P1     | Add +1 to SDM LSB Enable/Disable. | 0x0   | R/W    |
| 5    | VAR_MOD_EN | Enable Auxiliary SDM.             | 0x0   | R/W    |

#### Table 56. Bit Descriptions for REG0028 (Continued)

| Bits  | Bit Name   | Description | Reset | Access |
|-------|------------|-------------|-------|--------|
| [4:2] | REG28_RSV2 | Reserved.   | 0x0   | R/W    |
| 1     | REG28_RSV3 | Reserved.   | 0x0   | R/W    |
| 0     | REG28_RSV4 | Reserved.   | 0x0   | R/W    |

## Address: 0x29, Reset: 0x00, Name: REG0029



#### Figure 88.

#### Table 57. Bit Descriptions for REG0029

| Bits  | Bit Name  | Description                   | Reset | Access |
|-------|-----------|-------------------------------|-------|--------|
| [7:4] | CLK2_OPWR | Select CLK2 Output Amplitude. | 0x0   | R/W    |
|       |           | 0000: Min Power Setting.      |       |        |
|       |           | 1111: Max Power Setting.      |       |        |
| [3:0] | CLK1_OPWR | Select CLK1 Output Amplitude. | 0x0   | R/W    |
|       |           | 0000: Min Power Setting.      |       |        |
|       |           | 1111: Max Power Setting.      |       |        |

## Address: 0x2A, Reset: 0x04, Name: REG002A





#### Table 58. Bit Descriptions for REG002A

| Bits | Bit Name      | Description                                      | Reset | Access |
|------|---------------|--------------------------------------------------|-------|--------|
| 7    | REG2A_RSV5    | Reserved.                                        | 0x0   | R/W    |
| 6    | PHASE_ADJ_POL | Determines the Polarity of the Phase Adjustment. | 0x0   | R/W    |
|      |               | 0: Adds The Selected Phase Value.                |       |        |
|      |               | 1: Subtract The Selected Phase Value.            |       |        |
| 5    | REG2A_RSV4    | Reserved.                                        | 0x0   | R/W    |
| 4    | PD_SYNC       | Power Down the synchronization.                  | 0x0   | R/W    |
| 3    | REG2A_RSV3    | Reserved.                                        | 0x0   | R/W    |
| 2    | PD_RDET       | Power Down the Reference Detector.               | 0x1   | R/W    |
|      |               | 0: Normal Operation.                             |       |        |
|      |               | 1: Power Down the Reference Detector.            |       |        |
| 1    | REG2A_RSV2    | Reserved.                                        | 0x0   | R/W    |
| 0    | REG2A_RSV1    | Reserved.                                        | 0x0   | R/W    |

## Address: 0x2B, Reset: 0x83, Name: REG002B





#### Table 59. Bit Descriptions for REG002B

| Bits | Bit Name   | Description                      | Reset | Access |
|------|------------|----------------------------------|-------|--------|
| 7    | PD_ALL     | Main Power Down.                 | 0x1   | R/W    |
|      |            | 0: Normal Operation.             |       |        |
|      |            | 1: Power Down.                   |       |        |
| 6    | REG2B_RSV4 | Reserved.                        | 0x0   | R/W    |
| 5    | REG2B_RSV3 | Reserved.                        | 0x0   | R/W    |
| 4    | REG2B_RSV2 | Reserved.                        | 0x0   | R/W    |
| 3    | PD_LD      | Power Down the Lock Detector.    | 0x0   | R/W    |
|      |            | 0: Normal Operation.             |       |        |
|      |            | 1: Power Down the Lock Detector. |       |        |
| 2    | REG2B_RSV1 | Reserved.                        | 0x0   | R/W    |
| 1    | PD_CLKOUT1 | Power Down CLK1 Output Buffer.   | 0x1   | R/W    |
|      |            | 0: Normal Operation.             |       |        |
|      |            | 1: Power Down CLK1 Output.       |       |        |
| 0    | PD_CLKOUT2 | Power Down CLK2 Output Buffer.   | 0x1   | R/W    |
|      |            | 0: Normal Operation.             |       |        |
|      |            | 1: Power Down CLK2 Output.       |       |        |

## Address: 0x2C, Reset: 0x00, Name: REG002C



Figure 91.

#### Table 60. Bit Descriptions for REG002C

| Bits  | Bit Name | Description                                                          | Reset | Access |
|-------|----------|----------------------------------------------------------------------|-------|--------|
| [7:5] | LDWIN_PW | Lock Detector Pulse Window Width. The details are given in Table 14. | 0x0   | R/W    |
| [4:0] | LD_COUNT | Number of PFD Cycles Before LD Goes High. Cycles =                   |       |        |
|       |          | $24 \times \sqrt{2}^{LD\_COUNT} + 3$                                 |       |        |
|       |          | if LD_COUNT is even                                                  |       |        |
|       |          | $32 \times \sqrt{2}^{LD\_COUNT - 1} + 3$                             |       |        |
|       |          | if LD_COUNT is odd                                                   | 0x0   | R/W    |

# Address: 0x2D, Reset: 0x00, Name: REG002D



Figure 92.

#### Table 61. Bit Descriptions for REG002D

| Bits  | Bit Name   | Description                                | Reset | Access |
|-------|------------|--------------------------------------------|-------|--------|
| 7     | EN_DNCLK   | Enable Div_Nclk to the Digital Block.      | 0x0   | R/W    |
|       |            | 0: Div_Nclk off.                           |       |        |
|       |            | 1: Div_Nclk on.                            |       |        |
| 6     | EN_DRCLK   | Enable Div_Rclk to the Digital Block.      | 0x0   | R/W    |
|       |            | 0: DIv_Rclk off.                           |       |        |
|       |            | 1: Div_Rclk on.                            |       |        |
| 5     | EN_LOL     | Enable Loss-of-Lock Detector.              | 0x0   | R/W    |
|       |            | 0: Disable loss-of-lock detector.          |       |        |
|       |            | 1: Enable loss-of-lock detector.           |       |        |
| 4     | EN_LDWIN   | Enable the Lock Detector Pulse Window.     | 0x0   | R/W    |
|       |            | 0: Lock detector pulse window disabled.    |       |        |
|       |            | 1: Lock detector pulse window enabled.     |       |        |
| 3     | REG2D_RSV2 | Reserved.                                  | 0x0   | R/W    |
| 2     | RST_LD     | Reset Lock Detector to the Unlocked State. | 0x0   | R/W    |
|       |            | 0: Reset inactive.                         |       |        |
|       |            | 1: Reset active.                           |       |        |
| [1:0] | REG2D_RSV1 | Reserved.                                  | 0x0   | R/W    |

## Address: 0x2E, Reset: 0x00, Name: REG002E



Figure 93.

#### Table 62. Bit Descriptions for REG002E

| Bits  | Bit Name | Description                   | Reset | Access |
|-------|----------|-------------------------------|-------|--------|
| [7:4] | MUXOUT   | Select Test Signal to MUXOUT. | 0x0   | R/W    |
|       |          | 0000: High-Z.                 |       |        |
|       |          | 0001: LKDET.                  |       |        |
|       |          | 0010: low.                    |       |        |
|       |          | 0011: low.                    |       |        |
|       |          | 0100: Div_Rclk/2.             |       |        |
|       |          | 0101: Div_Nclk/2.             |       |        |

Table 62. Bit Descriptions for REG002E (Continued)

| Bits | Bit Name   | Description                                                    | Reset | Access |
|------|------------|----------------------------------------------------------------|-------|--------|
|      |            | 0110: reserved.                                                |       |        |
|      |            | 0111: low.                                                     |       |        |
|      |            | 1000: high.                                                    |       |        |
|      |            | 1001: reserved.                                                |       |        |
|      |            | 1010: reserved.                                                |       |        |
|      |            | 1011: Iow.                                                     |       |        |
|      |            | 1100: Iow.                                                     |       |        |
|      |            | 1101: Iow.                                                     |       |        |
|      |            | 1110: reserved.                                                |       |        |
|      |            | 1111: reserved.                                                |       |        |
| 3    | REG2E_RSV1 | Reserved.                                                      | 0x0   | R/W    |
| 2    | EN_CPTEST  | Enable Charge Pump Force Up/Down Test Mode.                    | 0x0   | R/W    |
|      |            | 0: charge-pump force up/down test mode off (normal operation). |       |        |
|      |            | 1: charge-pump force up/down test mode on.                     |       |        |
| 1    | CP_DOWN    | Force Pump Down Charge Pump Test Mode.                         | 0x0   | R/W    |
|      |            | 0: force pump down off.                                        |       |        |
|      |            | 1: force pump down on.                                         |       |        |
| 0    | CP_UP      | Force Pump Up Charge Pump Test Mode.                           | 0x0   | R/W    |
|      |            | 0: force pump up off.                                          |       |        |
|      |            | 1: force pump up on.                                           |       |        |

## Address: 0x2F, Reset: 0x00, Name: REG002F





## Table 63. Bit Descriptions for REG002F

| Bits  | Bit Name   | Description                                                                            | Reset | Access |
|-------|------------|----------------------------------------------------------------------------------------|-------|--------|
| 7     | BST_REF    | Gain Boost for Low Amplitude Sine-Wave Reference Input (REF_SEL = 1).                  | 0x0   | R/W    |
|       |            | 0: use for large reference input signals > 1.6 V p-p when REF_SEL = 1.                 |       |        |
|       |            | 1: use for large reference input signals < 1.6 V p-p when REF_SEL = 1.                 |       |        |
| 6     | FILT_REF   | Select Noise Filter for Sine-Wave Reference Input Buffer.                              | 0x0   | R/W    |
|       |            | 0: noise filter off.                                                                   |       |        |
|       |            | 1: noise filter on.                                                                    |       |        |
| 5     | REF_SEL    | Select CML Reference Input or Sine Wave/Slow Slew Rate Reference Input.                | 0x0   | R/W    |
|       |            | 0: DMA. Delay matched amplifier (DMA), for improved reference to clock output delay.   |       |        |
|       |            | 1: LNA. Low noise amplifier (LNA), for low slew rate signals/low frequency sine waves. |       |        |
| 4     | REG2F_RSV2 | Reserved.                                                                              | 0x0   | R/W    |
| [3:0] | REG2F_RSV1 | Reserved.                                                                              | 0x0   | R/W    |

## Address: 0x30, Reset: 0x00, Name: REG0030



#### Figure 95.

#### Table 64. Bit Descriptions for REG0030

| Bits  | Bit Name   | Description                                                                 | Reset | Access |
|-------|------------|-----------------------------------------------------------------------------|-------|--------|
| 7     | MUTE_NCLK  | Mutes the N Divider Output to Digital Block. Set to 0 for normal operation. | 0x0   | R/W    |
| 6     | REG30_RSV3 | Reserved.                                                                   | 0x0   | R/W    |
| [5:3] | DRCLK_DEL  | Reserved.                                                                   | 0x0   | R/W    |
| [2:0] | DNCLK_DEL  | Reserved.                                                                   | 0x0   | R/W    |

#### Address: 0x31, Reset: 0x00, Name: REG0031



#### Figure 96.

#### Table 65. Bit Descriptions for REG0031

| Bits  | Bit Name   | Description                                                    | Reset | Access |
|-------|------------|----------------------------------------------------------------|-------|--------|
| [7:5] | REG31_RSV4 | Reserved.                                                      | 0x0   | R/W    |
| 4     | RST_SYS    | Reset Digital Except SPI Interface and Registers to POR State. | 0x0   | R/W    |
|       |            | 0: reset inactive.                                             |       |        |
|       |            | 1: reset active.                                               |       |        |
| 3     | EN_ADC_CLK | Enable the ADC Clock.                                          | 0x0   | R/W    |
|       |            | 0: disable ADC clock.                                          |       |        |
|       |            | 1: enable ADC clock.                                           |       |        |
| 2     | REG31_RSV3 | Reserved.                                                      | 0x0   | R/W    |
| 1     | REG31_RSV2 | Reserved.                                                      | 0x0   | R/W    |
| 0     | REG31_RSV1 | Reserved.                                                      | 0x0   | R/W    |

## Address: 0x35, Reset: 0x00, Name: REG0035





## Table 66. Bit Descriptions for REG0035

| Bits  | Bit Name   | Description                                                      | Reset | Access |
|-------|------------|------------------------------------------------------------------|-------|--------|
| 7     | REG35_RSV4 | Reserved.                                                        | 0x0   | R/W    |
| [6:3] | REG35_RSV3 | Reserved.                                                        | 0x0   | R/W    |
| 2     | DCLK_MODE  | Drop RCLK, NCLK Frequency by Factor of 2 During VCO Calibration. | 0x0   | R/W    |
|       |            | 0: disable frequency reduction.                                  |       |        |
|       |            | 1: enable frequency reduction.                                   |       |        |
| 1     | REG35_RSV2 | Reserved.                                                        | 0x0   | R/W    |
| 0     | REG35_RSV1 | Reserved.                                                        | 0x0   | R/W    |

# Address: 0x36, Reset: 0x00, Name: REG0036



Figure 98.

#### Table 67. Bit Descriptions for REG0036

| Bits  | Bit Name    | Description                        | Reset | Access |
|-------|-------------|------------------------------------|-------|--------|
| 7     | CLKODIV_DB  | CLKOUT_DIV Double Buffered.        | 0x0   | R/W    |
|       |             | 0: CLKOUT_DIV not double buffered. |       |        |
|       |             | 1: CLKOUT_DIV double buffered.     |       |        |
| 6     | DCLK_DIV_DB | DCLK_DIV1 Double Buffered.         | 0x0   | R/W    |
|       |             | 0: not double buffered.            |       |        |
|       |             | 1: double buffered.                |       |        |
| 5     | REG36_RSV3  | Reserved.                          | 0x0   | R/W    |
| 4     | REG36_RSV2  | Reserved.                          | 0x0   | R/W    |
| [3:0] | REG36_RSV1  | Reserved.                          | 0x0   | R/W    |

## Address: 0x37, Reset: 0x00, Name: REG0037



#### Figure 99.

#### Table 68. Bit Descriptions for REG0037

| Bits  | Bit Name     | Description                                                                                                        | Reset | Access |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | VCO_BAND_DIV | Time for Each VCO Calibration Decision. VCO calibration time per Decision = 16 × VCO_BAND_DIV/(Div_Rclk frequency) | 0x0   | R/W    |

## Address: 0x38, Reset: 0x00, Name: REG0038



[7:0] SYNTH\_LOCK\_TIMEOUT[7:0] (R/W) — Tim eout for the Calibration DAC Settling Tim e During a VCOCalibration.

#### Figure 100.

#### Table 69. Bit Descriptions for REG0038

| Bits  | Bit Name                | Description                                                                                                                         | Reset | Access |
|-------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | SYNTH_LOCK_TIMEOUT[7:0] | Timeout for the Calibration DAC Settling Time During a VCO Calibration. Time = SYNTH_LOCK_TIMEOUT/(f <sub>DIV_RCLK</sub> Frequency) | 0x0   | R/W    |

Address: 0x39, Reset: 0x00, Name: REG0039



Figure 101.

#### Table 70. Bit Descriptions for REG0039

| Bits  | Bit Name                 | Description                                                                                                                         | Reset | Access |
|-------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| 7     | O_VCO_DB                 | M_VCO_CORE, M_VCO_BAND, M_VCO_BIAS Doubled Buffered.                                                                                | 0x0   | R/W    |
|       |                          | 0: core, bias, and band not double buffered.                                                                                        |       |        |
|       |                          | 1: core, bias, and band double buffered.                                                                                            |       |        |
| [6:0] | SYNTH_LOCK_TIMEOUT[14:8] | Timeout for the Calibration DAC Settling Time During a VCO Calibration. Time = SYNTH_LOCK_TIMEOUT/(f <sub>DIV_RCLK</sub> Frequency) | 0x0   | R/W    |

## Address: 0x3A, Reset: 0x00, Name: REG003A

5 4 2 0 0 0 0 0 0 0 0

(ALC) Algorithm  $\mathsf{D}\,\mathsf{uring}\,\mathsf{VCOC}\mathsf{alibration}$ 

#### Figure 102.

#### Table 71. Bit Descriptions for REG003A

| Bits  | Bit Name             | Description                                                                                                                                | Reset | Access |
|-------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | VCO_ALC_TIMEOUT[7:0] | Timeout for Automatic Level Control (ALC) Algorithm During VCO Calibration. Time = VCO_ALC_TIMEOUT[14:0]/(f <sub>DIV_RCLK</sub> Frequency) | 0x0   | R/W    |

## Address: 0x3B, Reset: 0x00, Name: REG003B

#### Figure 103.

#### Table 72. Bit Descriptions for REG003B

| Bits | Bit Name    | Description                                                                     | Reset | Access |
|------|-------------|---------------------------------------------------------------------------------|-------|--------|
| 7    | DEL_CTRL_DB | Delay Controls Double Buffered. INV_CLKOUT, BLEED_I, BLEED_POL double buffered. | 0x0   | R/W    |

#### Table 72. Bit Descriptions for REG003B (Continued)

| Bits  | Bit Name              | Description                                                                                                                                | Reset | Access |
|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
|       |                       | 0: not double buffered.                                                                                                                    |       |        |
|       |                       | 1: double buffered.                                                                                                                        |       |        |
| [6:0] | VCO_ALC_TIMEOUT[14:8] | Timeout for Automatic Level Control (ALC) Algorithm During VCO Calibration. Time = VCO_ALC_TIMEOUT[14:0]/(f <sub>DIV_RCLK</sub> Frequency) | 0x0   | R/W    |

## Address: 0x3E, Reset: 0x00, Name: REG003E



[7:0] ADC\_CLK\_DIV (R/W) ADC Clock Divider Value

#### Figure 104.

#### Table 73. Bit Descriptions for REG003E

| Bits  | Bit Name    | Description                                                                                                                                                | Reset | Access |
|-------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| [7:0] | ADC_CLK_DIV | ADC Clock Divider Value. Desired ADC clock frequency < 400 kHz. If ADC_CLK_DIV = round up (((f <sub>DIV_RCLK</sub> )/ (Desired ADC Clock Frequency))-2)/4. | 0x0   | R/W    |

## Address: 0x3F, Reset: 0x00, Name: REG003F



Figure 105.

#### Table 74. Bit Descriptions for REG003F

| Bits | Bit Name   | Description                                                                                                                                | Reset | Access |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|
| 7    | EN_ADC_CNV | Enable ADC Conversion.                                                                                                                     | 0x0   | R/W    |
|      |            | 0: no ADC conversion.                                                                                                                      |       |        |
|      |            | 1: enabled. Normal operation.                                                                                                              |       |        |
| 6    | REG3F_RSV5 | Reserved.                                                                                                                                  | 0x0   | R/W    |
| 5    | REG3F_RSV4 | Reserved.                                                                                                                                  | 0x0   | R/W    |
| 4    | REG3F_RSV3 | Reserved.                                                                                                                                  | 0x0   | R/W    |
| 3    | REG3F_RSV2 | Reserved.                                                                                                                                  | 0x0   | R/W    |
| 2    | REG3F_RSV1 | Reserved.                                                                                                                                  | 0x0   | R/W    |
| 1    | EN_ADC     | Enable ADC.                                                                                                                                | 0x0   | R/W    |
|      |            | 0: ADC Disabled.                                                                                                                           |       |        |
|      |            | 1: ADC Enabled.                                                                                                                            |       |        |
| 0    | ADC_A_CONV | Run an ADC Conversion at the Start of a VCO Calibration.                                                                                   | 0x0   | R/W    |
|      |            | 0: ADC conversion only possible with write to ADC_ST_CNV bit field.                                                                        |       |        |
|      |            | 1: enabled. Normal operation. Automatically begins ADC conversion at the start of a VCO calibration or with write to ADC_ST_CNV bit field. |       |        |

## Address: 0x40, Reset: 0x00, Name: REG0040



Figure 106.

#### Table 75. Bit Descriptions for REG0040

| Bits  | Bit Name     | Description                           | Reset | Access |
|-------|--------------|---------------------------------------|-------|--------|
| [7:6] | REG40_RSV1   | Reserved.                             | 0x0   | R/W    |
| [5:3] | MUTE_CLKOUT2 | Mute Control for the Output Buffer 2. | 0x0   | R/W    |
| [2:0] | MUTE_CLKOUT1 | Mute Control for the Output Buffer 1. | 0x0   | R/W    |

## Address: 0x43, Reset: 0x00, Name: REG0043



Figure 107.

#### Table 76. Bit Descriptions for REG0043

| Bits  | Bit Name    | Description                                         | Reset | Access |
|-------|-------------|-----------------------------------------------------|-------|--------|
| 7     | REG43_RSV5  | Reserved.                                           | 0x0   | R/W    |
| 6     | ADC_CLK_SEL | Select ADC Clock Source.                            | 0x0   | R/W    |
|       |             | 0: Use Rclk as ADC Clock Source (normal Operation). |       |        |
|       |             | 1: Use SPI SCLK as ADC Clock Source (test Mode).    |       |        |
| 5     | REG43_RSV4  | Reserved.                                           | 0x0   | R/W    |
| 4     | REG43_RSV3  | Reserved.                                           | 0x0   | R/W    |
| 3     | REG43_RSV2  | Reserved.                                           | 0x0   | R/W    |
| [2:0] | REG43_RSV1  | Reserved.                                           | 0x0   | R/W    |

## Address: 0x4E, Reset: 0x00, Name: REG004E



Figure 108.

#### Table 77. Bit Descriptions for REG004E

| Bits  | Bit Name   | Description                           | Reset | Access |
|-------|------------|---------------------------------------|-------|--------|
| [7:6] | REG4E_RSV2 | Reserved.                             | 0x0   | R/W    |
| [5:4] | DCLK_DIV1  | Controls Div_Rclk Div1 Div_Nclk Div1. | 0x0   | R/W    |

Table 77. Bit Descriptions for REG004E (Continued)

| Bits | Bit Name   | Description                                            | Reset | Access |
|------|------------|--------------------------------------------------------|-------|--------|
|      |            | 00: Divide by 1.                                       |       |        |
|      |            | 01: Divide by 2.                                       |       |        |
|      |            | 10: Divide by 4.                                       |       |        |
|      |            | 11: Divide by 8.                                       |       |        |
| 3    | O_VCO_BAND | Override VCO Band with M_VCO_BAND.                     | 0x0   | R/W    |
|      |            | 0: VCO Band Code from VCO Calibration State-machine.   |       |        |
|      |            | 1: VCO Band Code from M_VCO_BAND.                      |       |        |
| 2    | O_VCO_CORE | Override VCO Core with M_VCO_CORE.                     | 0x0   | R/W    |
|      |            | 0: VCO Core Select from VCO Calibration State-machine. |       |        |
|      |            | 1: VCO Core Select from M_VCO_CORE.                    |       |        |
| 1    | O_VCO_BIAS | Override VCO Bias with M_VCO_BIAS.                     | 0x0   | R/W    |
|      |            | 0: VCO Bias Code from VCO Calibration State-machine.   |       |        |
|      |            | 1: VCO Bias Code from M_VCO_VBIAS.                     |       |        |
| 0    | REG4E_RSV1 | Reserved.                                              | 0x0   | R/W    |

# Address: 0x53, Reset: 0x00, Name: REG0053



Figure 109.

#### Table 78. Bit Descriptions for REG0053

| Bits  | Bit Name     | Description                                       | Reset | Access |
|-------|--------------|---------------------------------------------------|-------|--------|
| 7     | REG53_RSV2   | Reserved.                                         | 0x0   | R/W    |
| 6     | PD_SYNC_MON  | Power Down the SYSREF Setup/hold Monitor.         | 0x0   | R/W    |
|       |              | 0: Normal Operation.                              |       |        |
|       |              | 1: Power Down the SYSREF Setup/hold Monitor.      |       |        |
| 5     | SYNC_SEL     | SYSREF CML/PECL Input or LVDS Input.              | 0x0   | R/W    |
|       |              | 0: CML/PECL Input.                                |       |        |
|       |              | 1: LVDS Input.                                    |       |        |
| 4     | RST_SYNC_MON | Clear the Output Latch of the Setup/hold Monitor. | 0x0   | R/W    |
|       |              | 0: Reset Inactive.                                |       |        |
|       |              | 1: Reset Active.                                  |       |        |
| [3:0] | REG53_RSV1   | Reserved.                                         | 0x0   | R/W    |

## Address: 0x54, Reset: 0x00, Name: REG0054

[7:1] RESERVED

• [0] ADC\_ST\_CNV (R/W) Write This Bit to Start an ADC Conversion.

Figure 110.

#### Table 79. Bit Descriptions for REG0054

| Bits  | Bit Name   | Description                                | Reset | Access |
|-------|------------|--------------------------------------------|-------|--------|
| [7:1] | RESERVED   | Reserved.                                  | 0x0   | R      |
| 0     | ADC_ST_CNV | Write This Bit to Start an ADC Conversion. | 0x0   | R/W    |

## Address: 0x58, Reset: 0x00, Name: REG0058



#### Figure 111.

#### Table 80. Bit Descriptions for REG0058

| Bits | Bit Name   | Description                                                    | Reset | Access |
|------|------------|----------------------------------------------------------------|-------|--------|
| 7    | EN_CLK2    | Logic State on EN_CLK2 Input Pin.                              | 0x0   | R      |
| 6    | EN_CLK1    | Logic State on EN_CLK1 Input Pin.                              | 0x0   | R      |
| 5    | SYNC_OK    | 1 = SYSREF is in Correct Setup/hold with respect to reference. | 0x0   | R      |
| 4    | REG58_RSV1 | Reserved.                                                      | 0x0   | R      |
| 3    | REF_OK     | 1= Reference Input Amplitude Above Threshold.                  | 0x0   | R      |
| 2    | ADC_BUSY   | 1 = ADC Conversion in Progress.                                | 0x0   | R      |
| 1    | FSM_BUSY   | 1 = VCO Cal in Progress.                                       | 0x0   | R      |
| 0    | LOCKED     | Lock Detector Output.                                          | 0x0   | R      |

#### Address: 0x5A, Reset: 0x00, Name: REG005A



Figure 112.

#### Table 81. Bit Descriptions for REG005A

| Bits  | Bit Name | Description              | Reset | Access |
|-------|----------|--------------------------|-------|--------|
| [7:2] | RESERVED | Reserved.                | 0x0   | R      |
| [1:0] | VCO_CORE | VCO Core Readback Value. | 0x0   | R      |

### Address: 0x5B, Reset: 0x00, Name: REG005B



-

#### Table 82. Bit Descriptions for REG005B

| Bits  | Bit Name       | Description                                                          | Reset | Access |
|-------|----------------|----------------------------------------------------------------------|-------|--------|
| [7:0] | CHIP_TEMP[7:0] | Temperature Measured by the ADC. Bit[8] = Sign Bits[7:0] = Magnitude | 0x0   | R      |

Address: 0x5C, Reset: 0x00, Name: REG005C





#### Table 83. Bit Descriptions for REG005C

| Bits  | Bit Name     | Description                                                          | Reset | Access |
|-------|--------------|----------------------------------------------------------------------|-------|--------|
| [7:1] | RESERVED     | Reserved.                                                            | 0x0   | R      |
| 0     | CHIP_TEMP[8] | Temperature Measured by the ADC. Bit[8] = Sign Bits[7:0] = Magnitude | 0x0   | R      |

## Address: 0x5E, Reset: 0x00, Name: REG005E



[7:0] VCO\_BAND (R) VCO Band Readback Value

Figure 115.

#### Table 84. Bit Descriptions for REG005E

| Bits  | Bit Name | Description              | Reset | Access |
|-------|----------|--------------------------|-------|--------|
| [7:0] | VCO_BAND | VCO Band Readback Value. | 0x0   | R      |

## Address: 0x60, Reset: 0x00, Name: REG0060



Figure 116.

#### Table 85. Bit Descriptions for REG0060

| Bits  | Bit Name | Description              | Reset | Access |
|-------|----------|--------------------------|-------|--------|
| [7:4] | RESERVED | Reserved.                | 0x0   | R      |
| [3:0] | VCO_BIAS | VCO Bias Readback Value. | 0x0   | R      |

## Address: 0x63, Reset: 0x00, Name: REG0063



[7:0] VERSION (R) Chip Version.

Figure 117.

## Table 86. Bit Descriptions for REG0063

| Bits  | Bit Name | Description   | Reset | Access |
|-------|----------|---------------|-------|--------|
| [7:0] | VERSION  | Chip Version. | 0x0   | R      |

# **OUTLINE DIMENSIONS**



Figure 118. 48-Lead Land Grid Array Package [LGA] 7 mm × 7 mm Body CC-48-13 Dimensions Shown in millimeters

Updated: March 17, 2023

## **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description                             | Packing Quantity | Package Option |
|--------------------|-------------------|-------------------------------------------------|------------------|----------------|
| ADF4368BCCZ        | -40°C to +105°C   | 48-Terminal Land Grid Array [LGA] (7 mm x 7 mm) | Tray, 260        | CC-48-13       |
| ADF4368BCCZ-RL7    | -40°C to +105°C   | 48-Terminal Land Grid Array [LGA] (7 mm x 7 mm) | Reel, 500        | CC-48-13       |

<sup>1</sup> Z = RoHS-Compliant Part.

# **EVALUATION BOARDS**

| Model <sup>1</sup> | Description      |
|--------------------|------------------|
| EV-ADF4368SD1Z     | Evaluation Board |

<sup>1</sup> Z = RoHS-Compliant Part.

