74AUP1T34

Low-power dual supply translating buffer

Rev. 10 — 23 September 2024

Product data sheet

1. General description

The 74AUP1T34 is a single dual supply translating buffer. Input A is referenced to $V_{CC(A)}$ and output Y is referenced to $V_{CC(Y)}$. Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times. This device ensures very low static and dynamic power consumption across the entire V_{CC} range from 1.1 V to 3.6 V. This device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.1 V to 3.6 V
- CMOS low power dissipation
- · High noise immunity
- · Complies with JEDEC standards:
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- Wide supply voltage range:
 - V_{CC(A)}: 1.1 V to 3.6 V
 - V_{CC(Y)}: 1.1 V to 3.6 V
- Low static power consumption; I_{CC} = 0.9 μA (maximum)
- Each port operates over the full 1.1 V to 3.6 V power supply range
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Overvoltage tolerant inputs to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
- · Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Low-power dual supply translating buffer

3. Ordering information

Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
74AUP1T34GW	-40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1					
74AUP1T34GM	-40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm	<u>SOT886</u>					
74AUP1T34GN	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 × 1.0 × 0.35 mm	SOT1115					
74AUP1T34GS	-40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 × 1.0 × 0.35 mm	SOT1202					
74AUP1T34GX	-40 °C to +125 °C	X2SON5	plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 × 0.8 × 0.32 mm	SOT1226-3					
74AUP1T34GZ	-40 °C to +125 °C	XSON5	plastic thermal enhanced extremely thin small outline package with side-wettable flanks (SWF); no leads; 5 terminals; body 1.1 × 0.85 × 0.5 mm	SOT8065-1					

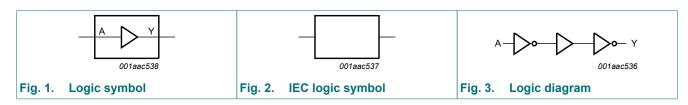
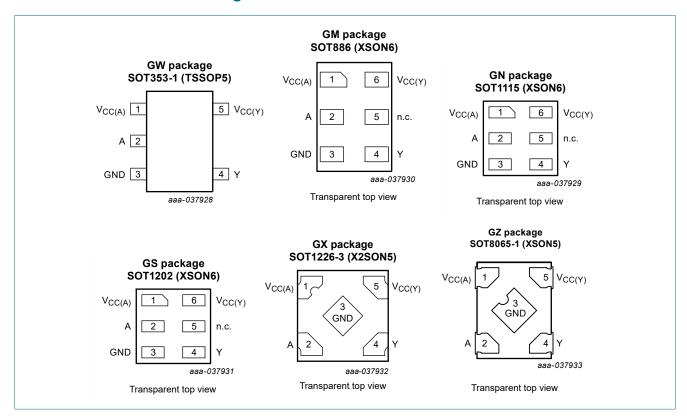

4. Marking

Table 2. Marking

Table 21 marking					
Marking code[1]					
pQ					

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

Low-power dual supply translating buffer

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description

Symbol	Pin	Pin			
TSSOP5, XSON5 and XSON6 X2SON5					
V _{CC(A)}	1	1	supply voltage port A		
A	2	2	data input A		
GND	3	3	ground (0 V)		
Υ	4	4	data output Y		
n.c.	-	5	not connected		
V _{CC(Y)}	5	6	supply voltage port Y		

Low-power dual supply translating buffer

7. Functional description

Table 4. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$

Input	Output
A	Υ
L	L
Н	Н

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+4.6	V
V _{CC(Y)}	supply voltage Y		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode and Power-down mode [1]	-0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CC(Y)}$	-	±20	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$ [2]	-	250	mW

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		1.1	3.6	V
$V_{CC(Y)}$	supply voltage Y		1.1	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage		0	V _{CC(Y)}	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	control and data inputs; V _{CC(A)} = 1.1 V to 3.6 V	0	200	ns/V

^[2] For SOT353-1 (TSSOP5) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C.

For SOT886 (XSON6) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C.

For SOT1115 (XSON6) package: Ptot derates linearly with 3.2 mW/K above 71 °C.

For SOT1202 (XSON6) package: Ptot derates linearly with 3.3 mW/K above 74 °C.

For SOT1226-3 (X2SON5) package: Ptot derates linearly with 3.0 mW/K above 67 °C.

For SOT8065-1 (XSON5) package: Ptot derates linearly with 3.2 mW/K above 72 °C.

Low-power dual supply translating buffer

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					•
V _{IH}	HIGH-level	V _{CC(A)} = 1.1 V to 1.95 V; V _{CC(Y)} = 1.1 V to 3.6 V	0.65 × V _{CC(A)}	-	-	V
	input voltage	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(Y)} = 1.1 V to 3.6 V	1.6	-	-	V
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(Y)} = 1.1 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level	V _{CC(A)} = 1.1 V to 1.95 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.35 × V _{CC(A)}	V
* IL	input voltage	$V_{CC(A)}$ = 2.3 V to 2.7 V; $V_{CC(Y)}$ = 1.1 V to 3.6 V	-	-	0.7	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}; V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	0.9	V
V _{OH}	HIGH-level	$V_I = V_{IH}$				
• ОН	output voltage	$I_O = -20 \mu A; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	V _{CC(Y)} - 0.1	-	-	V
		I_{O} = -1.1 mA; $V_{CC(A)} = V_{CC(Y)} = 1.1 V$	0.75 × V _{CC(Y)}	-	-	V
		I_{O} = -1.7 mA; $V_{CC(A)} = V_{CC(Y)} = 1.4 \text{ V}$	1.11	-	-	V
		I_{O} = -1.9 mA; $V_{CC(A)} = V_{CC(Y)} = 1.65 V$	1.32	-	-	V
		I_{O} = -2.3 mA; $V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	2.05	-	-	V
		I_{O} = -3.1 mA; $V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	1.9	-	-	V
		I_{O} = -2.7 mA; $V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$		-	-	V
		I_{O} = -4.0 mA; $V_{CC(A)} = V_{CC(Y)} = 3.0 V$	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IL}$				
		$I_O = 20 \mu A; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC(A)} = V _{CC(Y)} = 1.1 V	-	-	0.3 × V _{CC(Y)}	V
		I _O = 1.7 mA; V _{CC(A)} = V _{CC(Y)} = 1.4 V	-	-	0.31	V
		$I_{O} = 1.9 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 1.65 \text{ V}$	-	-	0.31	V
		$I_O = 2.3 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	-	-	0.31	V
		$I_{O} = 3.1 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	-	-	0.44	V
		$I_{O} = 2.7 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	-	-	0.31	V
		$I_{O} = 4.0 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	-	-	0.44	V
l _l	input leakage current	$V_1 = 0 \text{ V to } 3.6 \text{ V}; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μΑ
l _{OFF}	power-off leakage current	A input; $V_I = 0 \text{ V to } 3.6 \text{ V}; V_{CC(A)} = 0 \text{ V}; V_{CC(Y)} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.2	μA
		Y output; $V_O = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC(A)} = 0 \text{ V to } 3.6 \text{ V};$ $V_I = 0 \text{ V or } 3.6 \text{ V};$ $V_{CC(Y)} = 0 \text{ V}$	-	-	±0.2	μA
Δl _{OFF}	additional power-off	A input; V_I = 0 V to 3.6 V; $V_{CC(A)}$ = 0 V to 0.2 V; $V_{CC(Y)}$ = 0 V to 3.6 V	-	-	±0.2	μA
	leakage current	Y output; $V_O = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC(A)} = 0 \text{ V to } 3.6 \text{ V};$ $V_I = 0 \text{ V or } 3.6 \text{ V};$ $V_{CC(Y)} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC}	supply current	port A; $V_I = GND$ or $V_{CC(A)}$; $I_O = 0$ A				
		$V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	0.5	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(Y)} = 0 \text{ V}$	-	-	0.5	μA
		$V_{CC(A)} = 0 \text{ V}; V_{CC(Y)} = 3.6 \text{ V}$	-	0.0	-	μA
		port Y; V_I = GND or $V_{CC(A)}$; I_O = 0 A				
		V _{CC(A)} = V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.5	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(Y)} = 0 \text{ V}$	-	0.0	-	μA
		$V_{CC(A)} = 0 \text{ V}; V_{CC(Y)} = 3.6 \text{ V}$	-	-	0.5	μΑ
		port A and port Y; V_I = GND or $V_{CC(A)}$; I_O = 0 A; $V_{CC(A)}$ = $V_{CC(Y)}$ = 1.1 V to 3.6 V	-	-	0.5	μA
ΔI _{CC}	additional supply current	A input; $V_{CC(A)} = 3.3 \text{ V}$; $V_{CC(Y)} = 0 \text{ V}$ to 3.6 V; $V_{I} = V_{CC(A)} - 0.6 \text{ V}$	-	-	40	μA
C _I	input capacitance	A input; $V_{CC(A)} = V_{CC(Y)} = 0 \text{ V to } 3.6 \text{ V};$ $V_I = \text{GND or } V_{CC(A)}$	-	1.0	-	pF
Co	output capacitance	Y output; $V_O = GND$; $V_{CC(Y)} = 0 V$; $V_{CC(A)} = 0 V$ to 3.6 V	-	1.8	-	pF
T _{amb} = -	40 °C to +85 °C					
V _{IH}	HIGH-level	V _{CC(A)} = 1.1 V to 1.95 V; V _{CC(Y)} = 1.1 V to 3.6 V	0.65 × V _{CC(A)}	-	-	V
VIН	input voltage	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(Y)} = 1.1 V to 3.6 V	1.6	-	-	V
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(Y)} = 1.1 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level	V _{CC(A)} = 1.1 V to 1.95 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.35 × V _{CC(A)}	V
	input voltage	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.7	V
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	- 0.35 × V _{CC(A)} 0.7 0.9	V
V _{OH}	HIGH-level	$V_I = V_{IH}$				
	output voltage	$I_O = -20 \mu A; V_{CC(A)} = V_{CC(Y)} = 1.1 V \text{ to } 3.6 V$	V _{CC(Y)} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC(A)} = V _{CC(Y)} = 1.1 V	0.7 × V _{CC(Y)}	-	-	V
		$I_O = -1.7 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 1.4 \text{ V}$	1.03	-	- 0.5	V
		$I_O = -1.9 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 1.65 \text{ V}$	1.30	-	-	V
		$I_O = -2.3 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	1.97	-	-	V
		$I_O = -3.1 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	1.85	-	-	V
		$I_O = -2.7 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	2.67	-	-	V
		I_{O} = -4.0 mA; $V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	2.55	-	-	V
V_{OL}	LOW-level	$V_I = V_{IL}$				
	output voltage	$I_O = 20 \mu A; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC(A)} = V _{CC(Y)} = 1.1 V	-	-	0.3 × V _{CC(Y)}	V
		I _O = 1.7 mA; V _{CC(A)} = V _{CC(Y)} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC(A)} = V _{CC(Y)} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC(A)} = V _{CC(Y)} = 2.3 V	-	-	0.33	V
		$I_O = 3.1 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	-	-	0.45	V
		I _O = 2.7 mA; V _{CC(A)} = V _{CC(Y)} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC(A)} = V _{CC(Y)} = 3.0 V	-	-	0.45	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _I	input leakage current	$V_1 = 0 \text{ V to } 3.6 \text{ V}; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	±0.5	μΑ
I _{OFF}	power-off leakage current	A input; $V_I = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(Y)} = 0$ V to 3.6 V	-	-	±0.5	μΑ
		Y output; $V_O = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC(A)} = 0 \text{ V to } 3.6 \text{ V};$ $V_I = 0 \text{ V or } 3.6 \text{ V};$ $V_{CC(Y)} = 0 \text{ V}$	-	-	±0.5 ±0.5 ±0.6 ±0.6 ±0.6 0.9 0.9 - 0.9 0.9 50 - 0.3 × V _{CC(A)} 0.7 0.9 - - - - - - - - - - - - -	μА
ΔI_{OFF}	additional power-off	A input; V_I = 0 V to 3.6 V; $V_{CC(A)}$ = 0 V to 0.2 V; $V_{CC(Y)}$ = 0 V to 3.6 V	-	-	±0.6	μΑ
	leakage current	Y output; $V_O = 0 \text{ V to } 3.6 \text{ V}$; $V_{CC(A)} = 0 \text{ V to } 3.6 \text{ V}$; $V_I = 0 \text{ V or } 3.6 \text{ V}$; $V_{CC(Y)} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.6	μА
I _{CC}	supply current	port A; $V_I = GND$ or $V_{CC(A)}$; $I_O = 0$ A				
		$V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	0.9	μA
		V _{CC(A)} = 3.6 V; V _{CC(Y)} = 0 V	-	-	0.9	μA
		V _{CC(A)} = 0 V; V _{CC(Y)} = 3.6 V	-	0.0	-	μΑ
		port Y; V_I = GND or $V_{CC(A)}$; I_O = 0 A				
		V _{CC(A)} = V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.9	μΑ
		V _{CC(A)} = 3.6 V; V _{CC(Y)} = 0 V	-	0.0	-	μΑ
		V _{CC(A)} = 0 V; V _{CC(Y)} = 3.6 V	-	-	0.9	μΑ
		port A and port Y; V_I = GND or $V_{CC(A)}$; I_O = 0 A; $V_{CC(A)}$ = $V_{CC(Y)}$ = 1.1 V to 3.6 V	-	-	0.9	μΑ
ΔI _{CC}	additional supply current	A input; $V_{CC(A)} = 3.3 \text{ V}$; $V_{CC(Y)} = 0 \text{ V}$ to 3.6 V; $V_{I} = V_{CC(A)} - 0.6 \text{ V}$	-	-	50	μΑ
T _{amb} = -4	40 °C to +125 °C					
V _{IH}	HIGH-level	V _{CC(A)} = 1.1 V to 1.95 V; V _{CC(Y)} = 1.1 V to 3.6 V	0.7 × V _{CC(A)}	-	-	V
	input voltage	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(Y)} = 1.1 V to 3.6 V	1.6	-	-	V
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(Y)} = 1.1 V to 3.6 V	2.0	-	-	V
V_{IL}	LOW-level	V _{CC(A)} = 1.1 V to 1.95 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.3 × V _{CC(A)}	V
	input voltage	V _{CC(A)} = 2.3 V to 2.7 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.7	V
		V _{CC(A)} = 3.0 V to 3.6 V; V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level	$V_I = V_{IH}$				
	output voltage	I _O = -20 μA; V _{CC(A)} = V _{CC(Y)} = 1.1 V to 3.6 V	V _{CC(Y)} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC(A)} = V _{CC(Y)} = 1.1 V	0.6 × V _{CC(Y)}	-	-	V
		$I_O = -1.7 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 1.4 \text{ V}$	0.93	-	-	V
		I _O = -1.9 mA; V _{CC(A)} = V _{CC(Y)} = 1.65 V	1.17	-	-	V
		I_{O} = -2.3 mA; $V_{CC(A)} = V_{CC(Y)} = 2.3 V$	1.77	-	-	V
		I_{O} = -3.1 mA; $V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	1.67	-	-	V
		I_{O} = -2.7 mA; $V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	2.40	-	-	V
		I_{O} = -4.0 mA; $V_{CC(A)} = V_{CC(Y)} = 3.0 V$	2.30	-	-	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL} L OFF F	LOW-level $V_1 = V_{1L}$					
	output voltage	$I_O = 20 \mu A; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	0.11	V
		I _O = 1.1 mA; V _{CC(A)} = V _{CC(Y)} = 1.1 V	-	-	0.33 × V _{CC(Y)}	V
		I _O = 1.7 mA; V _{CC(A)} = V _{CC(Y)} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC(A)} = V _{CC(Y)} = 1.65 V	-	- 0.36 - 0.50 - 0.36	V	
		$I_O = 2.3 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	-	-	0.36	V
		$I_O = 3.1 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 2.3 \text{ V}$	-	-	0.50	V
OFF I		$I_O = 2.7 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	-	-	0.36	V
		$I_O = 4.0 \text{ mA}; V_{CC(A)} = V_{CC(Y)} = 3.0 \text{ V}$	0.33 × V _{CC(Y)} 0.41 0.39 0.36 0.50 0.36 0.50 0.50 0.50 1.4 1.4 - 0.0 - 1.4 - 0.0 - 1.4 - 1.4 - 0.0 - 1.4	V		
I _I	input leakage current	$V_1 = 0 \text{ V to } 3.6 \text{ V}; V_{CC(A)} = V_{CC(Y)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μΑ
I _{OFF}	power-off leakage current	A input; V _I = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(Y)} = 0 V to 3.6 V	-	-		μΑ
		Y output; $V_O = 0 \text{ V to } 3.6 \text{ V}$; $V_{CC(A)} = 0 \text{ V to } 3.6 \text{ V}$; $V_I = 0 \text{ V or } 3.6 \text{ V}$; $V_{CC(Y)} = 0 \text{ V}$	-	-	±0.75	μA
Δl _{OFF}	additional power-off	A input; $V_I = 0 \text{ V to } 3.6 \text{ V}; V_{CC(A)} = 0 \text{ V to } 0.2 \text{ V}; V_{CC(Y)} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μA
	leakage current	Y output; V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V to 3.6 V; V _I = 0 V or 3.6 V; V _{CC(Y)} = 0 V to 0.2 V	-	-	±0.75	μA
I _{CC}	supply current	port A; V _I = GND or V _{CC(A)} ; I _O = 0 A				
		V _{CC(A)} = V _{CC(Y)} = 1.1 V to 3.6 V	-	-	0.11 0.33 × V _{CC(Y)} 0.41 0.39 0.36 0.50 0.50 ±0.75 ±0.75 ±0.75 ±10.75 1.4 1.4 1.4 -	μΑ
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(Y)} = 0 \text{ V}$	-	-		μΑ
		V _{CC(A)} = 0 V; V _{CC(Y)} = 3.6 V	-	0.0	-	μΑ
		port Y; V _I = GND or V _{CC(A)} ; I _O = 0 A				
		V _{CC(A)} = V _{CC(Y)} = 1.1 V to 3.6 V	-	-	1.4	μΑ
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(Y)} = 0 \text{ V}$	-	0.0	-	μA
		V _{CC(A)} = 0 V; V _{CC(Y)} = 3.6 V	-	-	1.4	μΑ
		port A and port Y; V_I = GND or $V_{CC(A)}$; I_O = 0 A; $V_{CC(A)}$ = $V_{CC(Y)}$ = 1.1 V to 3.6 V	-	-	1.4	μΑ
ΔI _{CC}	additional supply current	A input; $V_{CC(A)} = 3.3 \text{ V}$; $V_{CC(Y)} = 0 \text{ V}$ to 3.6 V; $V_1 = V_{CC(A)} - 0.6 \text{ V}$	-	-	75	μA

Low-power dual supply translating buffer

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 5.

Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	+125 °C	Unit
		Min	Typ[1]	Max	Min	Max	Min	Max	
F; V _{CC(A)} = 1.1	V to 1.3 V			'				<u>'</u>	
propagation	A to Y; see <u>Fig. 4</u> [2]								
delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.6	9.8	25.4	2.3	25.9	2.3	25.9	ns
	V _{CC(Y)} = 1.4 V to 1.6 V	2.4	7.1	15.3	2.2	16.3	2.2	16.7	ns
	V _{CC(Y)} = 1.65 V to 1.95 V	2.1	6.0	12.7	1.9	13.8	1.9	14.3	ns
	$V_{CC(Y)} = 2.3 \text{ V to } 2.7 \text{ V}$	2.0	5.1	9.8	2.0	10.5	2.0	10.9	ns
	$V_{CC(Y)} = 3.0 \text{ V to } 3.6 \text{ V}$	2.1	4.7	8.8	1.9	9.1	1.9	9.3	ns
F; V _{CC(A)} = 1.4	V to 1.6 V								
propagation	A to Y; see <u>Fig. 4</u> [2]								
delay	$V_{CC(Y)} = 1.1 \text{ V to } 1.3 \text{ V}$	2.3	9.1	23.9	2.0	24.5	2.0	24.5	ns
	$V_{CC(Y)} = 1.4 \text{ V to } 1.6 \text{ V}$	2.1	6.4	13.6	1.9	14.7	1.9	15.2	ns
	V _{CC(Y)} = 1.65 V to 1.95 V	1.8	5.3	10.9	1.6	12.1	1.6	12.6	ns
	V _{CC(Y)} = 2.3 V to 2.7 V	1.7	4.3	7.8	1.6	8.7	1.6	9.2	ns
	V _{CC(Y)} = 3.0 V to 3.6 V	1.8	3.9	6.6	1.6	7.1	1.6	7.5	ns
F; V _{CC(A)} = 1.65	V to 1.95 V								
propagation	A to Y; see <u>Fig. 4</u> [2]								
delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.2	8.8	23.2	1.9	23.9	1.9	24.0	ns
	V _{CC(Y)} = 1.4 V to 1.6 V	2.0	6.0	13.0	1.8	14.1	1.8	14.6	ns
	V _{CC(Y)} = 1.65 V to 1.95 V	1.8	4.9	10.3	1.5	11.4	1.5	12.0	ns
	V _{CC(Y)} = 2.3 V to 2.7 V	1.6	3.9	7.2	1.5	8.0	1.5	8.5	ns
	V _{CC(Y)} = 3.0 V to 3.6 V	1.7	3.5	5.9	1.5	6.4	1.5	6.8	ns
F; V _{CC(A)} = 2.3	V to 2.7 V								
propagation	A to Y; see <u>Fig. 4</u> [2]								
delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.2	8.4	22.8	1.9	23.4	1.9	23.4	ns
	V _{CC(Y)} = 1.4 V to 1.6 V	1.9	5.7	12.3	1.8	13.4	1.8	14.0	ns
	V _{CC(Y)} = 1.65 V to 1.95 V	1.7	4.6	9.6	1.5	10.7	1.5	11.2	ns
	V _{CC(Y)} = 2.3 V to 2.7 V	1.5	3.5	6.3	1.5	7.2	1.5	7.7	ns
	V _{CC(Y)} = 3.0 V to 3.6 V	1.6	3.1	5.1	1.4	5.6	1.4	6.0	ns
$F; V_{CC(A)} = 3.0$	V to 3.6 V								
propagation	A to Y; see <u>Fig. 4</u> [2]								
delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.2	8.1	22.5	1.9	22.9	1.9	22.9	ns
	V _{CC(Y)} = 1.4 V to 1.6 V	1.9	5.4	12.0	1.8	12.9	1.8	13.4	ns
	V _{CC(Y)} = 1.65 V to 1.95 V	1.7	4.3	9.2	1.5	10.2	1.5	10.7	ns
		4 5	2.2	0.0	4.5	0.7	4.5		
	$V_{CC(Y)} = 2.3 \text{ V to } 2.7 \text{ V}$	1.5	3.3	6.0	1.5	6.7	1.5	7.2	ns
	F; V _{CC(A)} = 1.4 v propagation delay F; V _{CC(A)} = 1.4 v propagation delay F; V _{CC(A)} = 1.65 propagation delay F; V _{CC(A)} = 2.3 v	F; V _{CC(A)} = 1.1 V to 1.3 V propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 3.0 V to 3.6 V F; V _{CC(Y)} = 1.4 V to 1.6 V propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 3.0 V to 3.6 V F; V _{CC(Y)} = 1.4 V to 1.6 V propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 1.4 V to 1.6 V F; V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 1.4 V to 1.6 V Propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 3.0 V to 3.6 V F; V _{CC(Y)} = 1.1 V to 1.3 V V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 1.55 V to 1.95 V F; V _{CC(Y)} = 1.65 V to 1.95 V V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 3.0 V to 3.6 V F; V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 1.4 V to 1.5 V V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 2.3 V to 2.7 V V _{CC(Y)} = 1.4 V to 1.6 V V _{CC(Y)} = 2.3 V to 2.7 V V _{CC(Y)} = 3.0 V to 3.6 V F; V _{CC(A)} = 3.0 V to 3.6 V Propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 3.0 V to 3.6 V Propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 1.1 V to 1.3 V V _{CC(Y)} = 1.1 V to 1.3 V V _{CC(Y)} = 1.1 V to 1.3 V V _{CC(Y)} = 1.1 V to 1.3 V	Parameter Conditions Min	F; V _{CC(A)} = 1.1 V to 1.3 V propagation delay A to Y; see Fig. 4 V _{CC(Y)} = 1.1 V to 1.3 V A to Y; see Fig. 4 V _{CC(Y)} = 1.4 V to 1.6 V A to Y; see Fig. 4 V _{CC(Y)} = 1.65 V to 1.95 V A to Y; see Fig. 4 V _{CC(Y)} = 3.0 V to 3.6 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V A to Y; see Fig. 4 CC(Y) = 1.4 V to 1.6 V A to Y; see Fig. 4 CC(Y) = 1.4 V to 1.6 V A to Y; see Fig. 4 CC(Y) = 1.4 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.4 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 3.0 V to 3.6 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 1.4 V to 1.6 V CC(Y) = 2.3 V to 2.7 V A to Y; see Fig. 4 CC(Y) = 3.0 V to 3.6 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 3.0 V to 3.6 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 1.1 V to 1.3 V CC(Y) = 1.1 V to 1.3 V CC(Y) = 1.4 V to 1.6 V CC(Y) = 1.5 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.5 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.5 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.5 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.5 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 2.3 V to 2.7 V A to Y; see Fig. 4 CC(Y) = 1.5 V to 1.95 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 3.0 V to 3.6 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 3.0 V to 3.6 V A to Y; see Fig. 4 CC(Y) = 1.1 V to 1.3 V CC(Y) = 1.1 V to 1.6 V CC(Y) =	Parameter Conditions Exercise Min Typ[1] Max	Parameter	No	Parameter Conditions	Parameter Conditions

Product data sheet

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 10	pF; V _{CC(A)} = 1.	1 V to 1.3 V		,						
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	$V_{CC(Y)} = 1.1 \text{ V to } 1.3 \text{ V}$	2.6	10.7	27.1	2.5	27.6	2.5	27.6	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.6	7.7	16.7	2.3	17.5	2.3	17.6	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.7	6.6	13.4	2.4	14.2	2.4	14.7	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.2	5.6	10.3	2.2	11.0	2.2	11.4	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.5	5.3	9.5	2.2	9.7	2.2	10.0	ns
C _L = 10	pF; V _{CC(A)} = 1.4	4 V to 1.6 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.4	10.0	25.6	2.2	26.1	2.2	26.1	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.4	7.0	15.0	2.0	15.8	2.0	16.4	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.4	5.9	11.6	2.1	12.5	2.1	13.1	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.0	4.8	8.4	1.9	9.2	1.9	9.7	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.2	4.4	7.4	1.9	7.7	1.9	8.1	ns
C _L = 10	pF; V _{CC(A)} = 1.6	65 V to 1.95 V								
t _{pd}	propagation delay	A to Y; see <u>Fig. 4</u> [2]								
		V _{CC(Y)} = 1.1 V to 1.3 V	2.3	9.7	24.8	2.1	25.5	2.1	25.7	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.3	6.6	14.3	2.0	15.3	2.0	15.8	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.3	5.5	11.0	2.0	11.9	2.0	12.5	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	1.9	4.4	7.7	1.8	8.6	1.8	9.0	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.1	4.0	6.6	1.8	7.1	1.8	7.4	ns
C _L = 10	pF; V _{CC(A)} = 2.3	3 V to 2.7 V	'	l	'				1	•
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.3	9.3	24.4	2.1	25.1	2.1	25.1	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.2	6.3	13.6	1.9	14.6	1.9	15.1	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.2	5.1	10.3	2.0	11.2	2.0	11.7	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	1.8	4.1	6.9	1.8	7.7	1.8	8.2	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.0	3.6	5.8	1.7	6.3	1.7	6.6	ns
C _L = 10	$pF; V_{CC(A)} = 3.0$	V to 3.6 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.3	9.0	24.2	2.1	24.6	2.1	24.6	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.2	6.0	13.3	1.9	14.1	1.9	14.6	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.2	4.9	9.9	2.0	10.6	2.0	11.2	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	1.8	3.9	6.5	1.8	7.3	1.8	7.7	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.0	3.5	5.4	1.7	5.8	1.7	6.2	ns

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 15	pF; V _{CC(A)} = 1.1	1 V to 1.3 V		·		'				
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	3.0	11.5	28.6	2.8	29.2	2.8	29.2	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	3.1	8.3	17.3	2.7	18.6	2.7	19.1	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.8	7.1	14.1	2.7	15.2	2.7	15.8	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.6	6.1	11.1	2.7	11.6	2.7	12.1	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.9	5.7	9.9	2.6	10.3	2.6	10.6	ns
C _L = 15	pF; V _{CC(A)} = 1.4	4 V to 1.6 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.8	10.8	27.1	2.6	27.7	2.6	27.7	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.8	7.6	15.7	2.4	17.0	2.4	17.6	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.5	6.3	12.3	2.4	13.5	2.4	14.1	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.3	5.3	9.2	2.4	9.9	2.4	10.3	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.6	4.9	7.8	2.3	8.3	2.3	8.7	ns
C _L = 15	pF; V _{CC(A)} = 1.6	65 V to 1.95 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.7	10.5	26.4	2.5	27.1	2.5	27.3	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.7	7.2	15.0	2.3	16.4	2.3	17.0	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.4	6.0	11.7	2.3	12.8	2.3	13.5	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.2	4.9	8.5	2.2	9.2	2.2	9.7	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.5	4.5	7.1	2.2	7.7	2.2	8.0	ns
C _L = 15	pF; V _{CC(A)} = 2.3	3 V to 2.7 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.6	10.1	26.0	2.4	26.7	2.4	26.7	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.7	6.9	14.3	2.3	15.7	2.3	16.3	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.4	5.6	10.9	2.2	12.1	2.2	12.7	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.1	4.5	7.6	2.2	8.4	2.2	8.9	ns
		$V_{CC(Y)} = 3.0 \text{ V to } 3.6 \text{ V}$	2.4	4.1	6.2	2.1	6.8	2.1	7.2	ns
C _L = 15	$pF; V_{CC(A)} = 3.0$	0 V to 3.6 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	2.6	9.8	25.7	2.4	26.2	2.4	26.2	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	2.7	6.6	14.0	2.3	15.2	2.3	15.7	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	2.4	5.4	10.5	2.2	11.6	2.2	12.1	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.1	4.3	7.3	2.2	7.9	2.2	8.4	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	2.4	3.9	5.9	2.1	6.4	2.1	6.8	ns

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 30	pF; V _{CC(A)} = 1.	1 V to 1.3 V					·			,
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	3.7	13.7	32.9	3.5	33.5	3.5	33.5	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	3.6	9.8	19.5	3.6	20.9	3.6	21.4	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	3.7	8.4	15.9	3.5	17.0	3.5	17.7	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	3.0	7.2	12.2	3.4	12.7	3.4	13.2	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	3.8	6.8	10.9	3.4	12.2	3.4	12.5	ns
C _L = 30	pF; V _{CC(A)} = 1.4	4 V to 1.6 V	•							
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	3.5	13.1	31.5	3.2	32.0	3.2	32.0	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	3.3	9.1	17.8	3.3	19.2	3.3	19.9	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	3.4	7.6	14.2	3.2	15.4	3.2	16.0	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.8	6.4	10.3	3.1	11.0	3.1	11.5	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	3.5	5.9	8.9	3.1	10.1	3.1	10.5	ns
C _L = 30	pF; V _{CC(A)} = 1.0	65 V to 1.95 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	3.4	12.7	30.7	3.1	31.5	3.1	31.5	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	3.2	8.8	17.2	3.2	18.7	3.2	19.3	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	3.3	7.3	13.5	3.1	14.7	3.1	15.4	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.7	6.0	9.6	3.0	10.4	3.0	10.9	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	3.4	5.6	8.2	2.9	9.4	2.9	9.8	ns
C _L = 30	pF; V _{CC(A)} = 2.3	3 V to 2.7 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	3.3	12.4	30.3	3.1	31.0	3.1	31.0	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	3.2	8.4	16.5	3.1	18.0	3.1	18.7	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	3.2	6.9	12.8	3.0	14.0	3.0	14.6	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.6	5.6	8.8	2.9	9.6	2.9	10.1	ns
		$V_{CC(Y)} = 3.0 \text{ V to } 3.6 \text{ V}$	3.3	5.2	7.3	2.9	8.5	2.9	9.0	ns
C _L = 30	$pF; V_{CC(A)} = 3.0$	O V to 3.6 V								
t _{pd}	propagation	A to Y; see <u>Fig. 4</u> [2]								
	delay	V _{CC(Y)} = 1.1 V to 1.3 V	3.3	12.0	30.0	3.1	30.5	3.1	30.5	ns
		V _{CC(Y)} = 1.4 V to 1.6 V	3.2	8.1	16.2	3.1	17.5	3.1	18.1	ns
		V _{CC(Y)} = 1.65 V to 1.95 V	3.2	6.7	12.4	3.0	13.4	3.0	14.1	ns
		V _{CC(Y)} = 2.3 V to 2.7 V	2.6	5.5	8.5	2.9	9.1	2.9	9.6	ns
		V _{CC(Y)} = 3.0 V to 3.6 V	3.2	5.0	7.0	2.9	8.1	2.9	8.5	ns

Low-power dual supply translating buffer

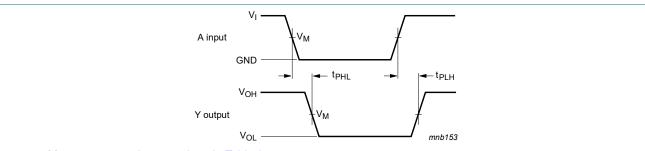
Symbol	Parameter	Conditions	25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit	
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 5 p	F, 10 pF, 15 pF	and 30 pF								
1.5	power dissipation capacitance	f_i = 1 MHz; [3][4] V _I = GND to V _{CC(A)}								
		$V_{CC(A)} = V_{CC(Y)} = 1.2 \text{ V}$	-	3.8	-	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(Y)} = 1.5 \text{ V}$	-	3.8	-	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(Y)} = 1.8 \text{ V}$	-	4.1	-	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(Y)} = 2.5 \text{ V}$	-	4.2	-	-	-	-	-	pF
		$V_{CC(A)} = V_{CC(Y)} = 3.3 \text{ V}$	-	4.6	-	-	-	-	-	pF

- All typical values are measured at nominal V_{CC}.
- t_{pd} is the same as t_{PLH} and t_{PHL} . All specified values are the average typical values over all stated loads. [3]
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;


C_L = output load capacitance in pF;

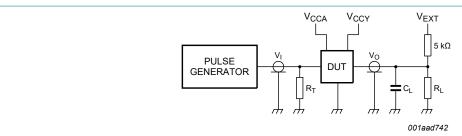
V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_0)$ = sum of the outputs.

11.1. Waveforms and test circuit

Measurement points are given in Table 9.


Logic levels: V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.

The data input (A) to output (Y) propagation delays Fig. 4.

Table 9. Measurement points

Supply voltage	Output	Input				
$V_{CC(A)}/V_{CC(Y)}$	V _M	V _M	V _I	$t_r = t_f$		
1.1 V to 3.6 V	0.5 × V _{CC(Y)}	0.5 × V _{CC(A)}	$V_{CC(A)}$	≤ 3.0 ns		

Low-power dual supply translating buffer

Test data is given in Table 10.

Definitions for test circuit:

R_L = Load resistance;

C_L = Load capacitance including jig and probe capacitance;

R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator;

V_{EXT} = External voltage for measuring switching times.

Fig. 5. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Load	V _{EXT}	
$V_{CC(A)}/V_{CC(Y)}$	CL	R _L [1]	t _{PLH} , t _{PHL}
1.1 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open

[1] For measuring enable and disable times R_L = 5 k Ω . For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

Low-power dual supply translating buffer

12. Package outline

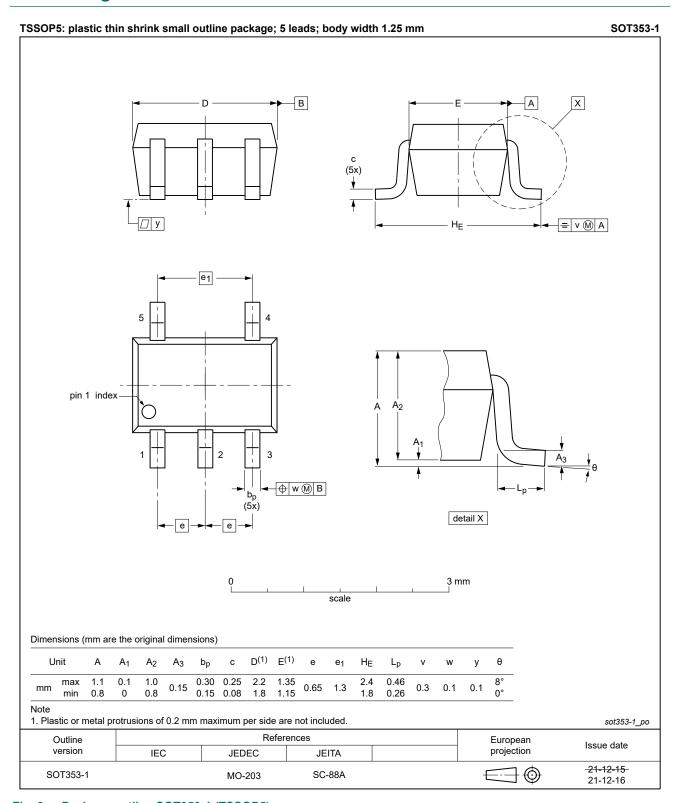


Fig. 6. Package outline SOT353-1 (TSSOP5)

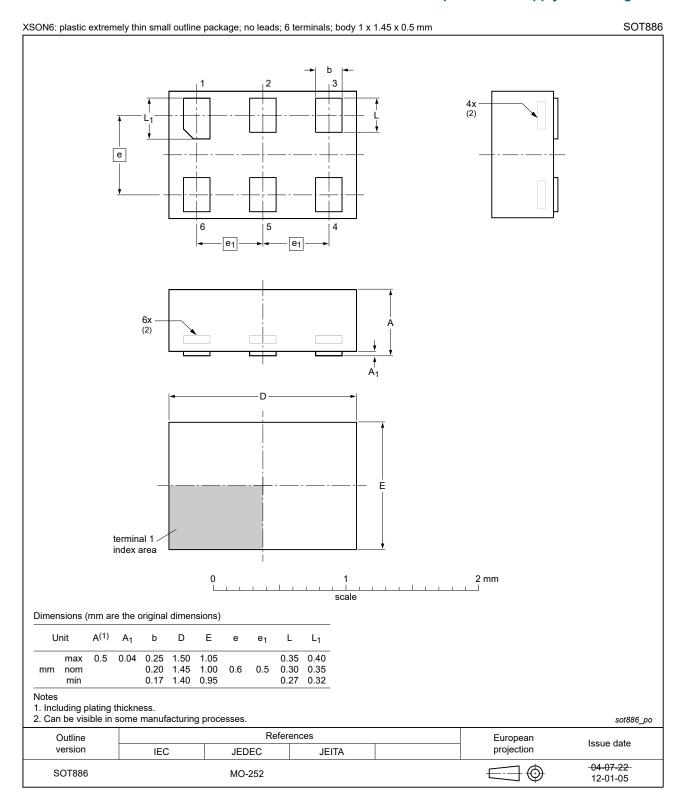


Fig. 7. Package outline SOT886 (XSON6)

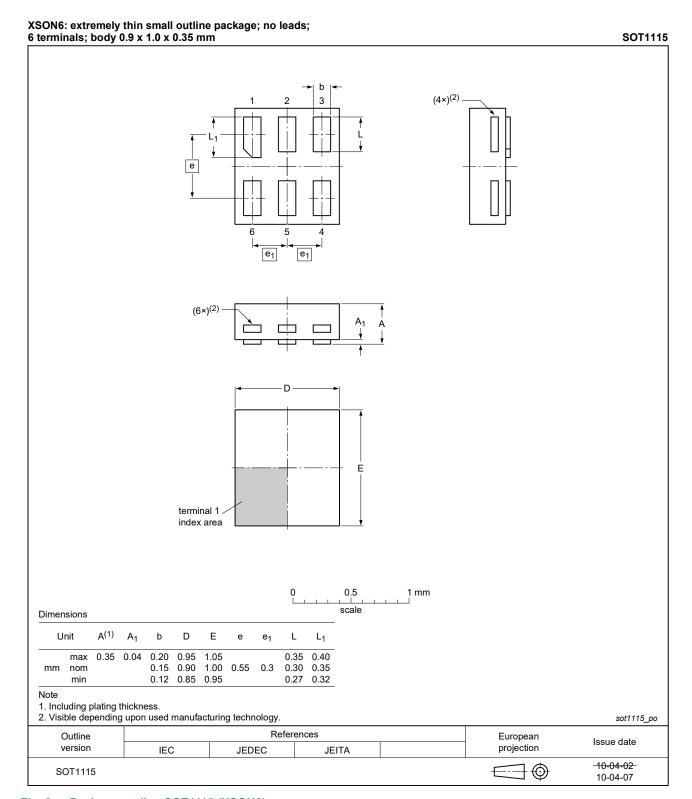


Fig. 8. Package outline SOT1115 (XSON6)

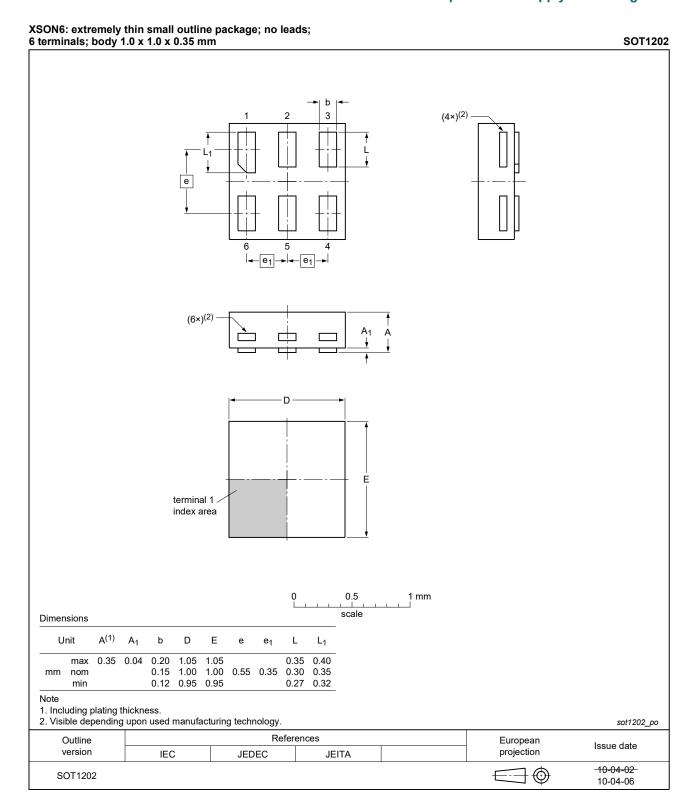


Fig. 9. Package outline SOT1202 (XSON6)

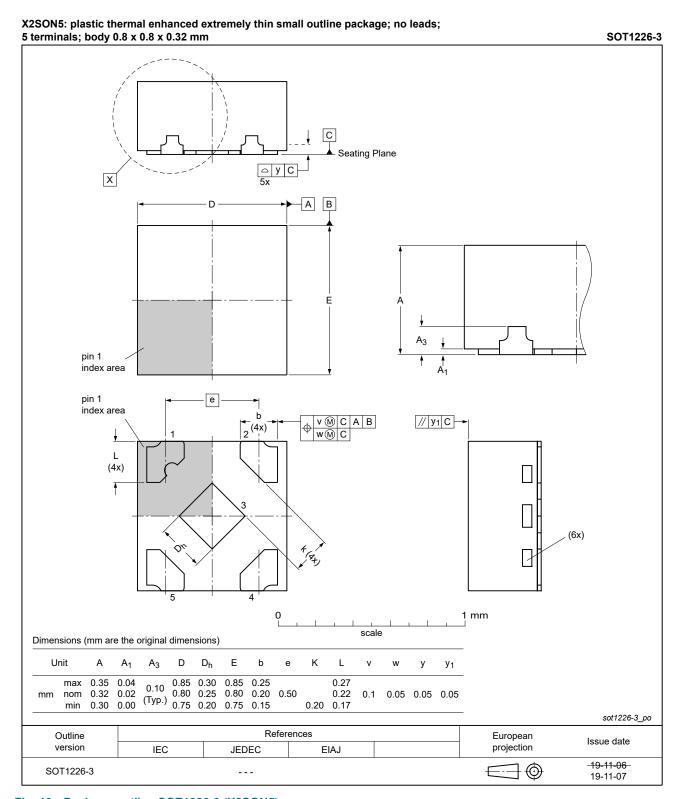


Fig. 10. Package outline SOT1226-3 (X2SON5)

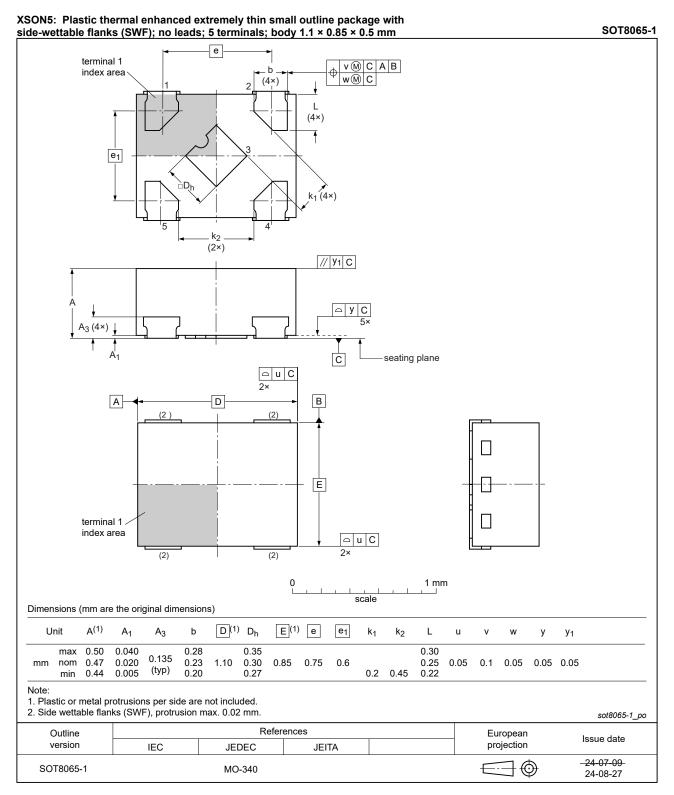


Fig. 11. Package outline SOT8065-1 (XSON5)

Low-power dual supply translating buffer

13. Abbreviations

Table 11. Abbreviations

Acronym	Description
ANSI	American National Standards Institute
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
ESDA	ElectroStatic Discharge Association
НВМ	Human Body Model
JEDEC	Joint Electron Device Engineering Council

14. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes						
74AUP1T34 v.10	20240923	Product data sheet	-	74AUP1T34 v.9						
Modifications:	Type numbe	Type number 74AUP1T34GZ (SOT8065-1/XSON5) added.								
74AUP1T34 v.9	20230717	Product data sheet - 74AUP1T34 v.8								
Modifications:	Section 2: E	<u>Section 2</u> : ESD specification updated according to the latest JEDEC standard.								
74AUP1T34 v.8	20220125	Product data sheet	-	74AUP1T34 v.7						
Modifications:		 <u>Section 2</u> updated. <u>Fig. 6</u>: Package outline drawing for SOT353-1 has changed. 								
74AUP1T34 v.7	20210518	Product data sheet	-	74AUP1T34 v.6						
Modifications:	Type numbeSection 1 up	 SOT1226 (X2SON5) package changed to SOT1226-3 (X2SON5) package. Type number 74AUP1T34GF (SOT891/XSON6) removed. Section 1 updated. Table 5: Derating values for P_{tot} total power dissipation updated. 								
74AUP1T34 v.6	20190128	Product data sheet	-	74AUP1T34 v.5						
Modifications:	of Nexperia.	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 								
74AUP1T34 v.5	20130904	Product data sheet	-	74AUP1T34 v.4						
Modifications:	Added type	number 74AUP1T34GX (So	OT1226)							
74AUP1T34 v.4	20120316	Product data sheet	-	74AUP1T34 v.3						
Modifications:	Package out	Package outline drawing of SOT886 (Fig. 7) modified.								
74AUP1T34 v.3	20111128	Product data sheet	-	74AUP1T34 v.2						
Modifications:	 Legal pages 	Legal pages updated.								
74AUP1T34 v.2	20100819	Product data sheet	-	74AUP1T34 v.1						
74AUP1T34 v.1	20061204	Product data sheet	-	-						

Low-power dual supply translating buffer

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Low-power dual supply translating buffer

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	
7. Functional description	
8. Limiting values	4
9. Recommended operating conditions	
10. Static characteristics	
11. Dynamic characteristics	
11.1. Waveforms and test circuit	
12. Package outline	
13. Abbreviations	
14. Revision history	
15. Legal information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 23 September 2024

[©] Nexperia B.V. 2024. All rights reserved