Onsemi

General Purpose Transistors

PNP, 65 V, 100 mA

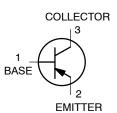
NST856MTWFT

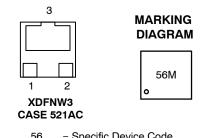
The NST856MTWFT is designed for general purpose amplifier applications. It is housed in an ultra-compact DFN1010-3 with wettable flanks, recommended for the automotive industry's optical inspection methods. The transistor is ideal for low-power surface mount applications where board space and reliability are at a premium.

Features

- Wettable Flank Package for Optimal Automated Optical Inspection (AOI)
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_A = 25^{\circ}C$)


Rating	Symbol	Max	Unit
Collector – Emitter Voltage	V _{CEO}	-65	Vdc
Collector – Base Voltage	V _{CBO}	-80	Vdc
Emitter – Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-100	mA
Collector Current – Peak	I _{CM}	200	mA


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient (Note 1)	$R_{\theta JA}$	191	°C/W
Total Power Dissipation per Device $@T_A = 25^{\circ}C$ (Note 1)	P _D	650	mW
Junction and Storage Temperature Range	T _J , T _{stg}	−65 to +150	°C

1. Per JESD51-7 with standard PCB footprint and 2 oz. Cu.

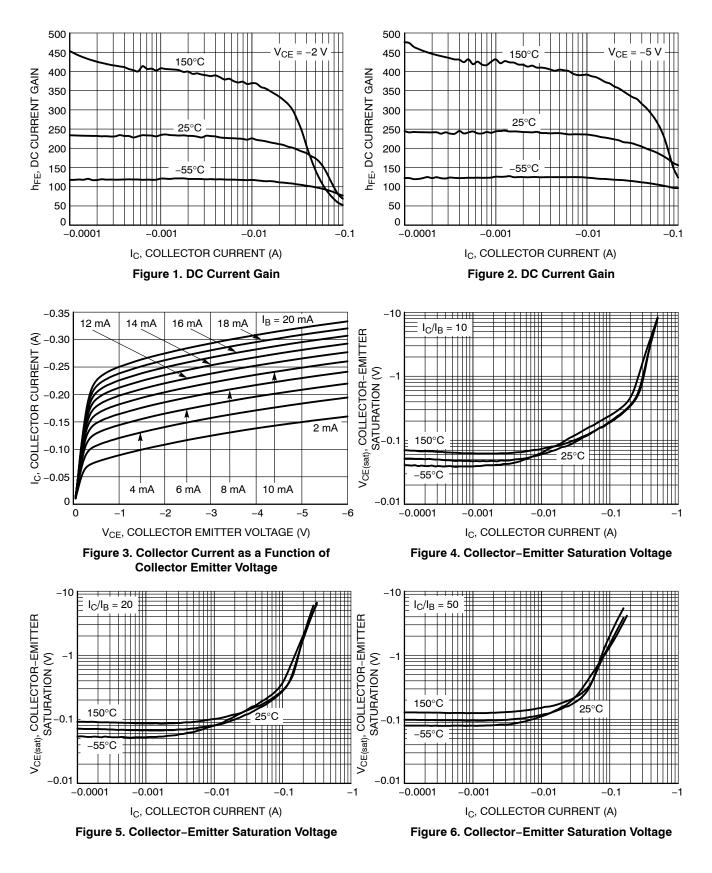
⁼ Specific Device Code Μ

ORDERING INFORMATION

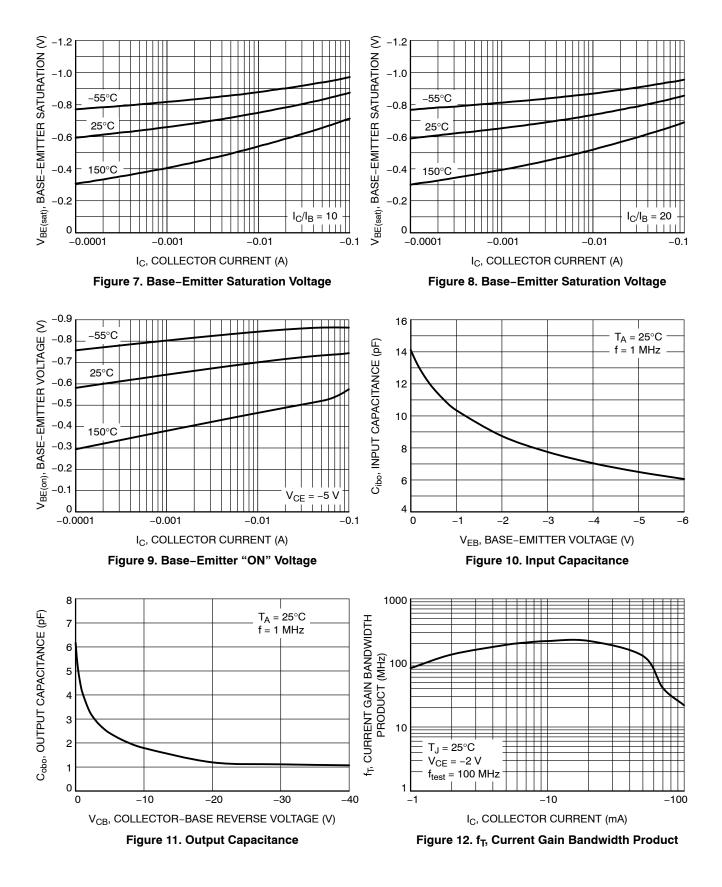
Device	Package	Shipping [†]
NST856MTWFTBG	XDFNW3 (Pb-Free)	3000 / Tape & Reel
NSVT856MTWFTBG	XDFNW3 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

⁼ Month Code


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage (I _C = -10 mA)	V _{(BR)CEO}	-65	-	-	V
Collector – Emitter Breakdown Voltage (I _C = –10 μ A, V _{EB} = 0)	V _{(BR)CES}	-80	-	-	V
Collector – Base Breakdown Voltage ($I_C = -10 \ \mu A$)	V _{(BR)CBO}	-80	-	-	V
Emitter – Base Breakdown Voltage (I _E = –0.1 μ A, I _C = 0)	V _{(BR)EBO}	-5.0	-	-	V
Collector Cutoff Current $(V_{CB} = -30 V)$ $(V_{CB} = -30 V, T_A = 150^{\circ}C)$	I _{CBO}			-15.0 -5.0	nA μA
Emitter – Base Cutoff Current ($V_{BE} = -6 V$, $I_C = 0$)	I _{EBO}	-	-	-0.1	μA
ON CHARACTERISTICS					
	h _{FE}	_ 220	150 290	_ 450	
	V _{CE(sat)}			-0.25 -0.60	V
$\label{eq:Base-Emitter Saturation Voltage} \\ (I_C = -10 \text{ mA}, I_B = -0.5 \text{ mA}) \\ (I_C = -100 \text{ mA}, I_B = -5.0 \text{ mA}) \end{aligned}$	V _{BE(sat)}		-0.7 -0.9		V
$ \begin{array}{l} \text{Base} - \text{Emitter Turn-on Voltage} & (\text{Note 2}) \\ (I_{\text{C}} = -2.0 \text{ mA}, \text{V}_{\text{CE}} = -5.0 \text{ V}) \\ (I_{\text{C}} = -10 \text{ mA}, \text{V}_{\text{CE}} = -5.0 \text{ V}) \end{array} $	V _{BE(on)}	-0.6 -		-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS					
Transition Frequency (I _C = -10 mA, V _{CE} = -5.0 V, f = 100 MHz)	fT	100	_	-	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)	C _{obo}	_	1.8	4.0	pF
Noise Figure (I_C = -0.2 mA, V_{CE} = -5.0 Vdc, R_S = 2.0 k\Omega, f = 1.0 kHz, BW = 200 Hz)	NF	-	1.0	-	dB


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Condition: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

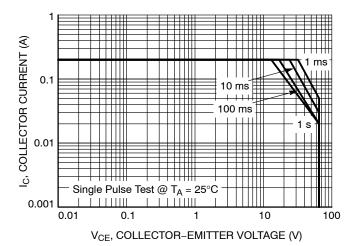


Figure 13. Safe Operating Area

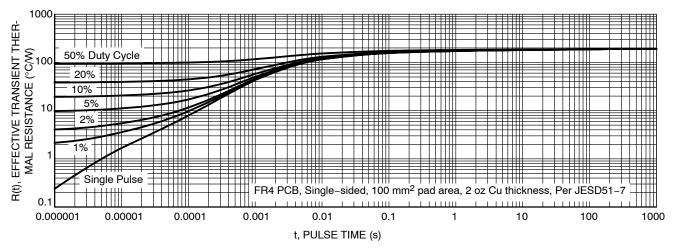



Figure 14. Thermal Resistance

onsemi

DOCUMENT NUMBER:	98AON11341H	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	XDFNW3 1.00x1.00x0.38 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>