

Evaluation Board for S32M24x LIN MCUs Hardware User Manual

S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

© NXP B.V. 2024. All rights reserved

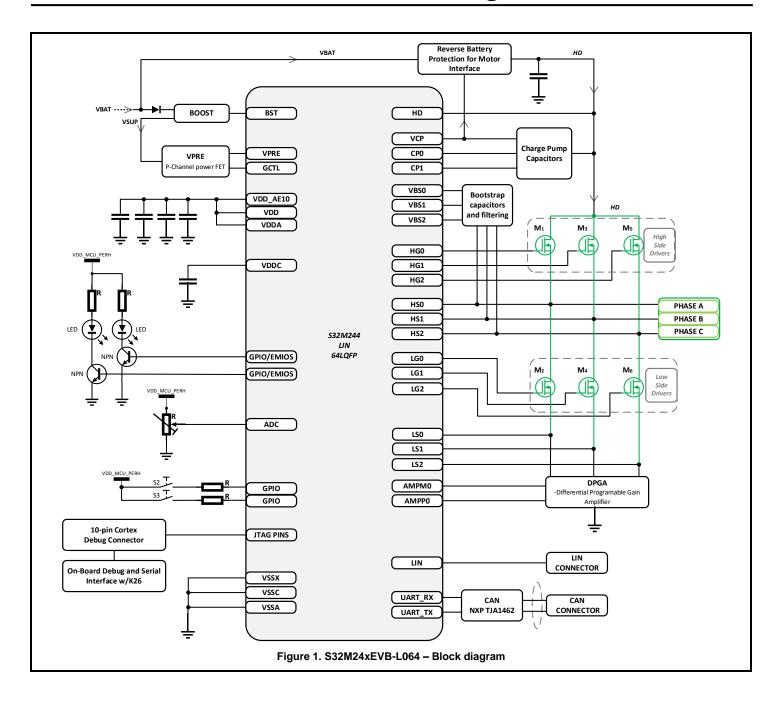
NXP Semiconductors

1.Table of contents

1.	Table of contents2						
2.	Definitions, Acronyms, and Abbreviations3						
3.	5	S32M24xEVB-L064 – Block Diagram	4				
4.	S	32M24xEVB-L064 - Features	5				
5.	Sa	32M24xEVB-L064 – Default Configuration	6				
6.	S	32M24xEVB-L064 – Default Jumpers	6				
7.	Ρ	Power Supplies Options – Overview	7				
7	7.1	S32M24xEVB-L064 – Main Power Supply	7				
7	7.2	S32M24xEVB-L064 – VPRE	9				
7	7.3	S32M24xEVB-L064 VDD_AE10, VDD, VDDA	9				
7	7.5	S32M24xEVB-L064 – VDDC_MCU	9				
8.	M	lotor Control Interface	10				
9.	S	32M24xEVB-L064 – Programming and Debug Interface	12				
ç	9.1	S32M24xEVB-L064 – RESET switch and led indicator	12				
g	9.2	S32M24xEVB-L064 – On-board Debugger	13				
10.		S32M24xEVB-L064 – CAN PHY	14				
11.		S32M24xEVB-L064 – LIN PHY	15				
12.		S32M24xEVB-L064 – User Peripherals	17				
1	2.1	S32M24xEVB-L064 – User Led	17				
1	12.2 S32M24xEVB-L064 – User Push buttons						
1	2.3	S32M24xEVB-L064 – ADC Rotary Potentiometer	20				
13.		S32M24xEVB-L064 – Revision history					
14.		Legal Information	22				
1	4.1	Definitions	22				
1	4.2	2 Disclaimers	22				
1	4.3	3 Trademarks	22				

The following list defines the abbreviations used in this document.

BST CCM CMOS CP CPU CSPI DDR DIP DPGA EEPROM FET GCTL GDU GPIO GPO HG HS HW HVI HVM I2C I/O JTAG LED LG LPM LS MB MCU MOSFET MS NVRAM PCB PHY PMC POR PSRAM	Boost Counter with CBC MAC (Cipher block chaining message authentication code) Complementary Metal Oxide Semiconductor. Charge Pump Central Processing Unit. Configurable Serial Peripheral Interface. Double Data Rate. Dual In-line Package. Differential Programmable Gain Amplifier Electrically Erasable Programmable Read Only Memory. Erasable Programmable Read Only Memory. Field-Effect Transistor Gate Control Gate Driver Unit General Purpose Input/output. General Purpose Output. High-side Gate High-side Source Hardware. High Voltage Input High Voltage Input High Voltage Module Inter-Integrated Circuit. Input/output. Joint Test Access Group. Light Emiting Diode. Low-side Gate Low-side Source Megabyte. Microcontroller Unit. Metal-Oxide-Semiconductor Field-Effect Transistor Memory Stick. Non-volatile Random-Access Memory. Printed Circuit Board. Physical interface. Power Management Controller Power-on Reset. Pseudo Random Access Memory.
	Printed Circuit Board.
-	
PSRAM PWR	Pseudo Random Access Memory. Power.
PWM	Pulse Width Modulation.
RAM	Random Access Memory.
SDRAM	Synchronous Dynamic Random-Access Memory.
TFT	Thin Film Transistor.
UART	Universal Asynchronous Receiver/Transmitter.
USB	Universal Serial Bus.

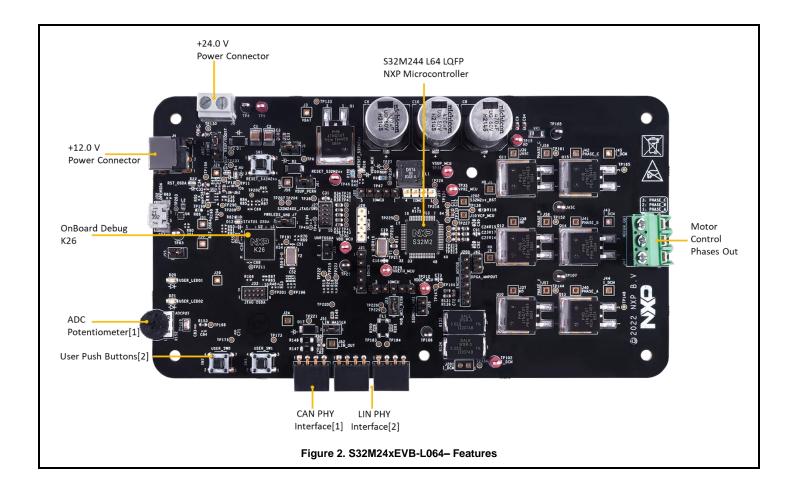

NXP Semiconductors

All Information provided in this document is subject to legal disclaimers

© NXP B.V. 2024. All rights reserved

Page 3 of 22

3. S32M24xEVB-L064 – Block Diagram


S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

4. S32M24xEVB-L064 - Features

IMPORTANT

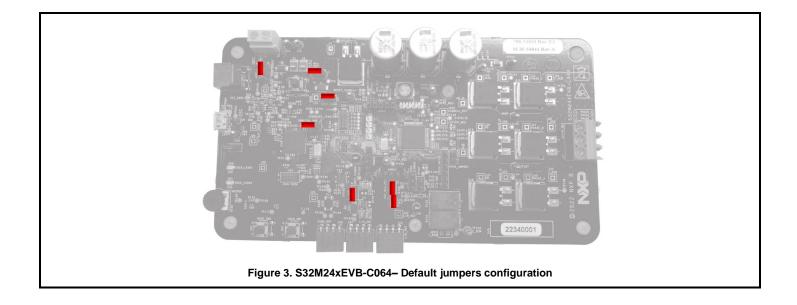

- Verify and download the last version of this document in http://www.nxp.com
- Before the S32M24xEVB-L064 Evaluation board is used or power is applied, please fully read this user manual. An incorrect configuration in the board may cause a irreparable damage on the component, MCU or EVB. Power must be removed from the EVB prior to:
 - Removing or placing some component or measurement
 - Re-configuring the board jumpers

Table 1. S32M24xEVB-L064 - Default Configuration

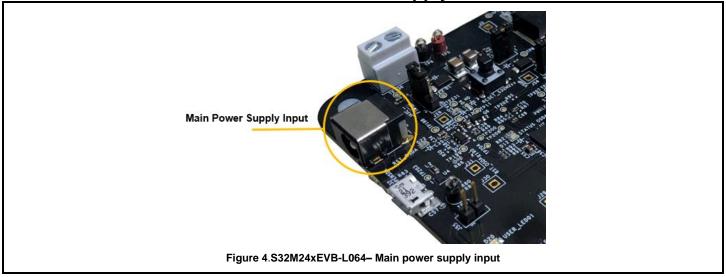
Interface	Reference / Signal	Default Configuration	Description/Comment		
S32M246 MCU	U13	N/A	S32M244L_64LQFP		
OnBoard	U9	PTC2	PTC2/LPUART0_RX is routed to NTS0102GD terminal B1 for serial interface to K26FN2M0VMI18		
Debugger K26		PTC3	PTC3/LPUART0_TX is routed to NTS0102GD terminal B2 for serial interface to K26FN2M0VMI18		
LIN Interface	Internal LIN	LIN	LIN pin is routed to J53 and J54 pin 2		
		CAN0_RX_MCU	PTE4/FXIO_D7 is routed to TJA1462 RX		
CAN		CAN0_TX_MCU	PTE5/ FXIO_D6 is routed to TJA1462 TX		
Interface TJA1462	U11	CAN0_STB_MCU	PTE2 is routed to TJA1462SLP		
IJA 1402		CANH	CANH is routed to J50 terminal 2		
		CANL	CANL is routed to J50 terminal 1		
User Push	SW2	PTA15	Active Low		
Buttons	SW3	PTD0	Active Low		
User LEDs	D20	PTE15	User Led 1		
	D21	PTE16	User Led 2		
ADC Potentiometers	ADCPOT	PTE6	ADCPOT0 is routed to PTE6 – USER_ADC, to use this feature place J55		

6. S32M24xEVB-L064 – Default Jumpers

S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

Table 2. S32M24xEVB-C064 - Default jumpers position.

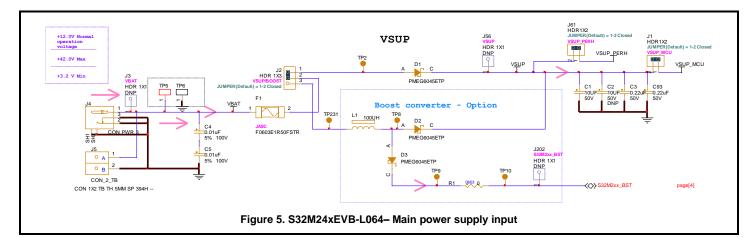

Interface	Reference	Position	Description / Comments
	J2	1-2	VBAT is routed to VSUP
Power	J61	1-2	VSUP is routed to VSUP_PERH
Supply	J1	1-2	VSUP_MCU is routed to VSUP input of MCU
	J7	1-2	Power LEDs to ground connection
Peripherals	J23	1-2	VDD_MCU is connected to the VDD_MCU_PERH to supply SW peripherals (leds, buttons, user_adc) and CAN interface
LIN	J51	1-2	VSUP_PERH connected to give robustness to the signal in master mode
CANPHY	J49	1-2	VBAT connected to MPQ2013 which is a low power linear regulator to supply CAN PHY U11

7. Power Supplies Options – Overview

The EVB requires an external power supply voltage of $+12V/\ge 2A$ that can be connected in the connector J4 or J5. This allows the EVB to be easily used in a vehicle if required. The 12V input on the EVB is used to supply the microcontroller directly (VSUP) and the microcontroller generate an internally supply voltage (VDD_AE10, VDD_HV_A) with the input voltage from VPRE.

One of the outstanding features of this microcontroller is its capability to supply voltage without the need for an SBC, this is of great convenience in order to reduce the BOM of materials. However, In order to reduce MCU power consumption and minimize potential thermal issues, VPRE is generated using the Gate Control pin to reduce the VSUP voltage to 6 volts and thus supply VPRE.

7.1 S32M24xEVB-L064 – Main Power Supply



S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

Table 3. S32M24xEVB-C064 - Main power supply connector

Connector	Description
Ground V+ (+12 Volts)	2.1mm Barrel Connector – J4 This connector should be used to connect the supplied wall-plug main adapter. Note if a replacement or alternative adapter is used, care must be taken to ensure the 2.1mm plug uses the correct polarization as shown.
Ground V+ (12Volts).	2-Way Screw Type Connector – J5 This can be used to connect a bare wire lead to the EVB, typically from a laboratory power supply. Care must be taken to ensure correct connection. For more details consult the schematic

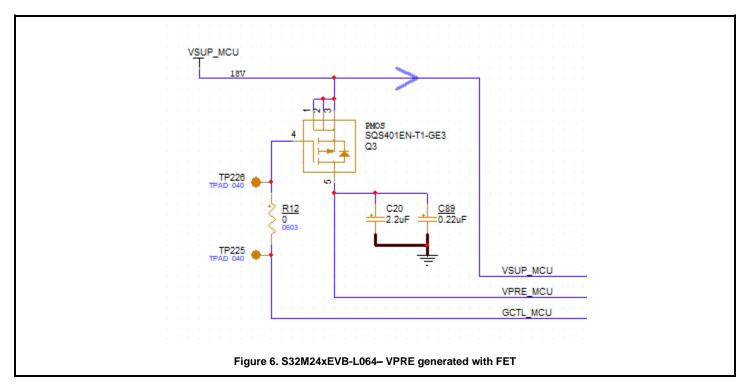


Table 4. S32M24xEVB-L064 -	VSUP	jumpers	description.
----------------------------	------	---------	--------------

Interface	Reference	Position	Description / Comments
	13	1-2 (Default)	(Option A) This jumper configuration routes the output from the fuse (VBAT) to a protection diode and then the supply for peripherals and MCU after bulk and decoupling capacitors for the voltage input .
VSUP	J2	2-3	(Option B) This jumper configuration routes the output from the fuse (VBAT) to a power boost converter circuit. For more details related to the boost converter circuit consult the S32M2 Hardware Design Guidelines
	J61	1-2 (Default closed)	This header is used to supply the peripherals like RESET LED, LINPHY and USER LEDS.
	J1	1-2	This header is used to supply the VSUP input from the MCU.

7.2 S32M24xEVB-L064 – VPRE

VPRE_MCU is typical 6V and generated from the VSUP_MCU. It can be either generated with an external power FET (gate controlled via GCTL pin) or generated by a PMC internal regulator. VPRE is always powered (FPM and LPM). An external bypass capacitor in the range from 2.2uF to 4.7uF is required.

7.3 S32M24xEVB-L064 VDD_AE10, VDD, VDDA

The VDD_AE10 pin belongs to the analog die side and provides energy to the microcontroller over the VDD pin.

VDD is the supply output that powers the MCU die. It can be configured to be either 3.3V or 5V. It is internally generated from VPRE.

Meanwhile the VDDA pin power the analog modules of the MCU, I,g. AD converter. That pins are connected together with in a common source plane on PCB. Appropriate decoupling capacitors are needed in order to filter noise on the supplies. The value of the decoupling and bulk capacitors are shown in the Table 5.

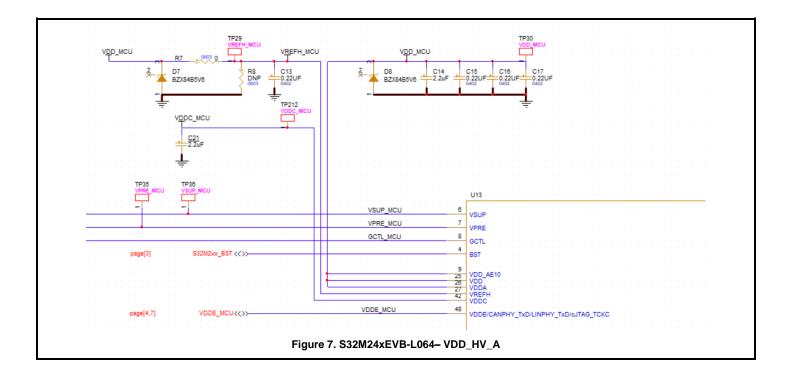
7.4 S32M24xEVB-L064 – VREFH

The VREFH represents an input pin of the ADC reference voltage. VREFH should always supply by voltage, which is equal to or less than the supply rail + 0.1 V (VDDA + 0.1 V and VDD + 0.1 V, or VDD_HV_A + 0.1 V). Is mandatory add a decoupling capacitor as shown in the Figure 7.

7.5 S32M24xEVB-L064 – VDDC_MCU

VDDC is CAN supply pin whose voltage is generated by internal voltage regulator from VPRE which can be enabled or disabled to decrease power consumption, this voltage is typically 5V. If configured on, VDDC is automatically turned off in LPM (Low Power Mode) and after wake-up from LPM, VDDC is automatically turned on again. An external bulk capacitor is mandatory as shown in the Figure 7.

S32M24X-EVB L064 HWUM All Information provided in this document is subject to legal disclaimers © NXP B.V. 2024. All rights reserved


NXP Semiconductors

7.6 S32M24xEVB-L064 – VDDE

VDDE is a configurable source which can be used in two modes: digital mode, and analog mode. When used in analog mode, the VDDE pin can drive a strong VDD voltage or a weak GND. In the digital mode, can be set for CANPHY_TX, LINPHY_TX, or not used and not driven. However, for mode selecting, refer to reference manual".

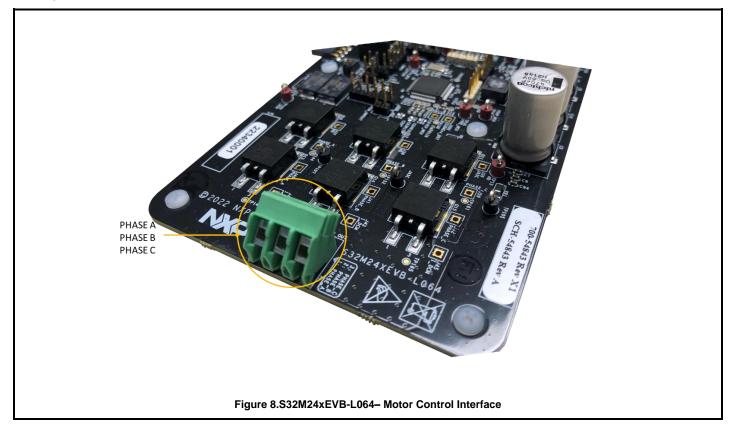
Table 5. Decoupling and bulk capacitors val	lue for VDD HV A pins
Tuble 0. Decoupling and balk capacitors va	

Capacitor	Characteristic	Value
Decoupling Capacitor	X7R / X8R Ceramic	100nf - 220nF
Bulk Capacitor	X7R / X8R Ceramic	4.7uF - 2.2uF

8. Motor Control Interface

The S32M24x integrates automotive qualified and application-focused capabilities like MOSFET Gate pre-drivers for motor control with 6 external power MOSFETs for BLDC or PMSM motor drive applications. The above due the S32M2XX MCU integrates a GDU which provides pre-drivers to control three-phase DC motor via external FETs. In order to support this control, it includes a charge pump and boost converter. The above replace a bootstrap circuit for gate driving.

The GDU contains three gate driver instances. Each instance drives 1 high-side FET (HG) and 1 low-side FET (LG). These high-side and low-side drivers support driving the three phases of a brushless DC motor. The primary function of a driver is to switch a MOSFET from off-state to on-state and vice versa. The pre-driver amplifies the control signals to the required


S32M24X-EVB L064 HWUM A	All Information provided in this document	is subject to legal disclaimers
-------------------------	---	---------------------------------

© NXP B.V. 2024. All rights reserved

NXP Semiconductors

levels to drive the power MOSFET. To guarantee reliable operation, the low-side drivers are supplied by the VLS regulator, while the high-side drivers are supplied directly by the bootstrap circuit over the VBS pins internally.

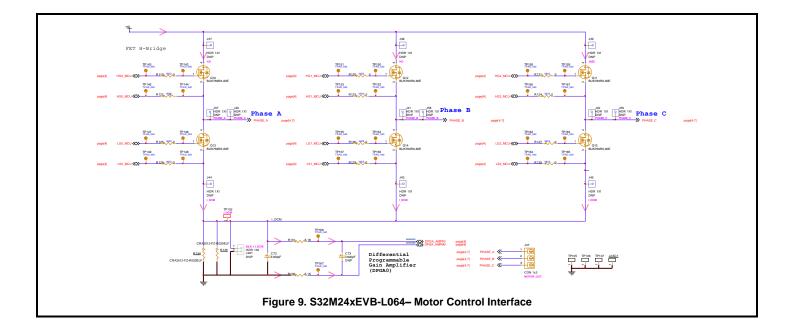
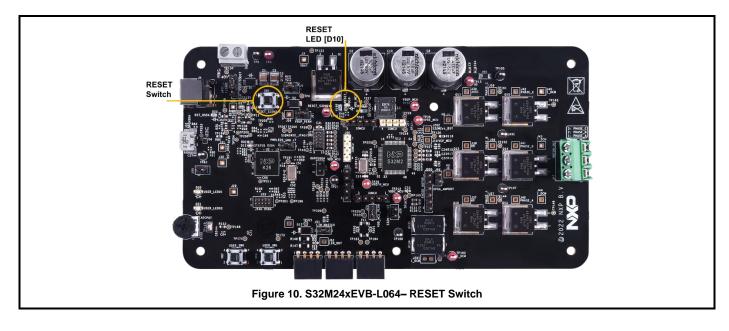

The outputs from the MOSFETs to the motor are connected to J47.

Table 6.- S32M24xEVB-L064 Motor control out

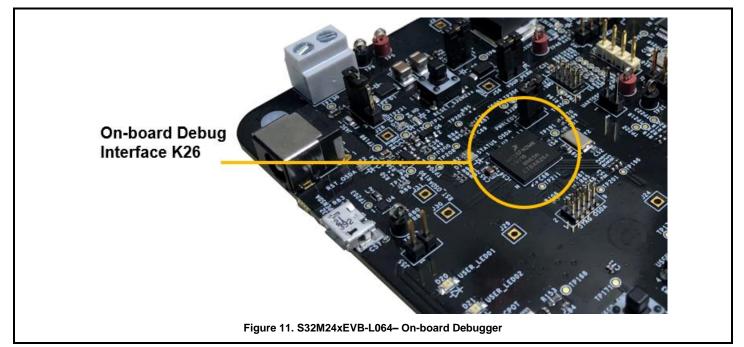
Connector	Reference	Pin Number	Signal/Connection				
		1	PHASE A				
						2	PHASE B
		3	PHASE C				
U							

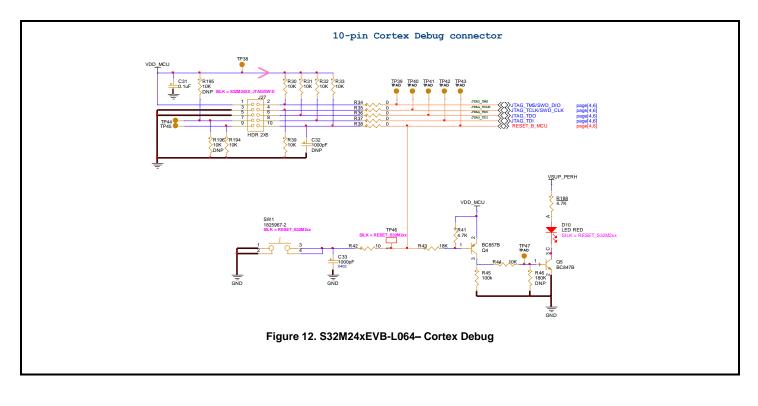

All Information provided in this document is subject to legal disclaimers

9. S32M24xEVB-L064 – Programming and Debug Interface

9.1 S32M24xEVB-L064 – RESET switch and led indicator

The RESET switch [SW1] provides an input signal for manual application RESET. The S32M2 MCU will drive the RESET signal to the reset pins in the EVB [PTA5 and RESET]. The RESET LED indicator [D10] will be ON for the duration of the RESET signal. This operation indicates the S32M24 MCU is in the RESET state.




S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

9.2 S32M24xEVB-L064 – On-board Debugger

The S32M24xEVB-L064 incorporates an On-Board Debugger (the MK26FN2M0VMI18) as well as embedded JTAG connector [J27]. It bridges serial and debug communications between an USB host and an embedded target processor.

S32M24X-EVB L064 HWUM

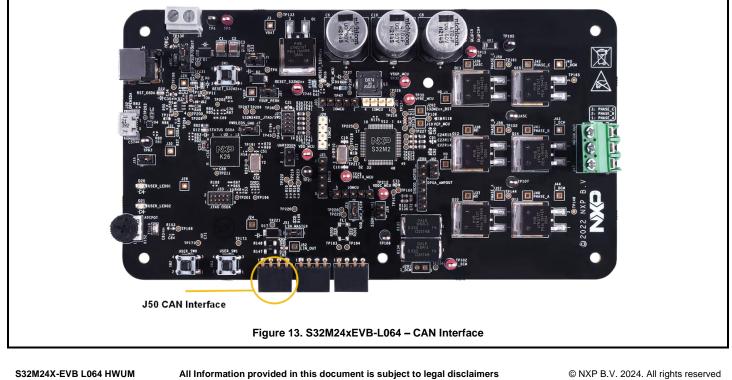
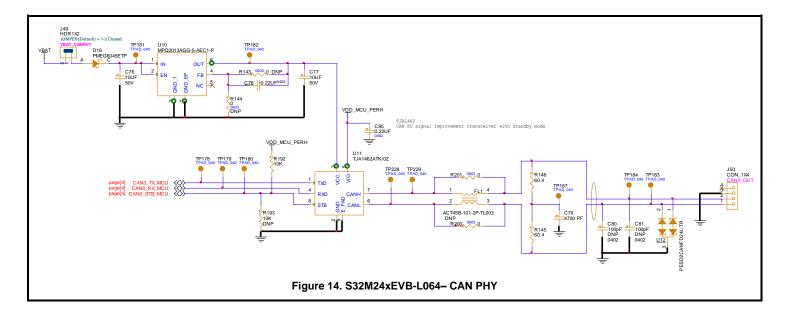

All Information provided in this document is subject to legal disclaimers

Table 7.- S32M24xEVB-L064 Cortex connector

Connector	Reference	Pin Number	Signal/Connection
		1	VDD_MCU
		2	JTAG_TMS/SWD_DIO
	J27 -	3	GND
		4	JTAG_TCLK/SWD_CLK
		5	GND
		6	JTAG_TDO
		7	DNP
		8	JTAG_TDI
		9	GND
		10	RESET_B_MCU

10. S32M24xEVB-L064 – CAN PHY


The EVB incorporates a CAN interface connected to the S32M24 MCU. Using an NXP CAN transceiver the TJA1462 enables both interfaces in this EVB, the output of this transceiver is connected to J50.

S32M24X-EVB L064 HWUM

Table 8.- S32M24xEVB-L064 CAN Connector

Connector	Reference	Pin Number	Signal/Connection
	J50	1	CANH
		2	CANL
		3	GND
		4	NC

11. S32M24xEVB-L064 – LIN PHY

The S32M24xEVB-L064 incorporates internally a LIN interface but is necessary connect the passive components at the output pin LIN. The connection in the EVB supports both master and slave mode (jumper selectable). That signals are connected to J53 and J54 respectively.

The pinout of these headers is shown

Table 9.

S32M24X-EVB L064 HWUM

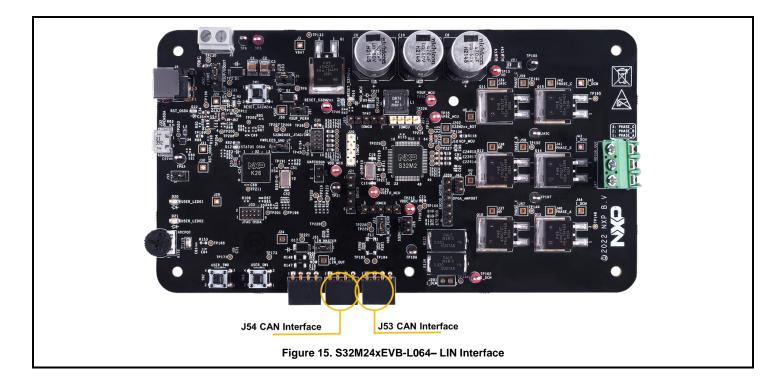
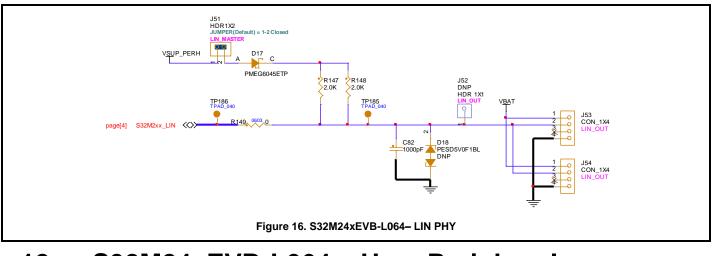



Table 9.- S32M24xEVB-L064 LIN Connector

Connector	Reference	Pin Number	Signal/Connection
	J53	1	VBAT
		2	LIN
		3	NC
		4	GND
	J54	1	VBAT
		2	LIN
		3	NC
		4	GND

All Information provided in this document is subject to legal disclaimers

Page 16 of 22

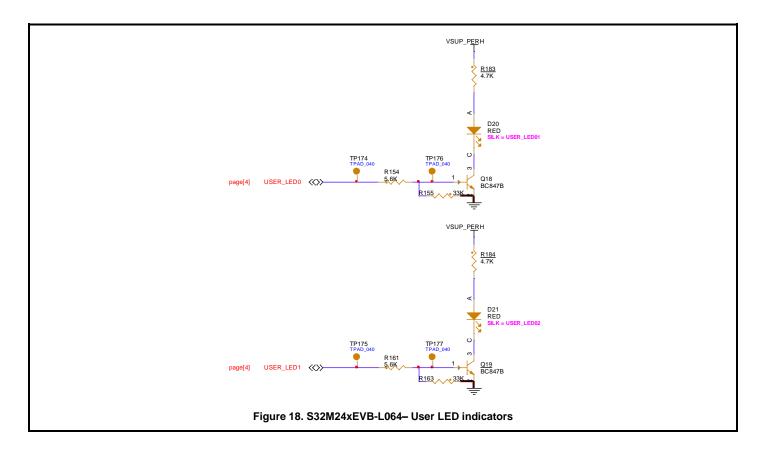
12. S32M24xEVB-L064 – User Peripherals

12.1 S32M24xEVB-L064 - User Led

The EVB incorporates two red LED connected through NPN transistors to the MCU ports. These are connected as shown in the Figure 18

Table 10.- S32M24xEVB-L064 LED connections

Reference	Signal Name	MCU Port Default	Color
D20	USER_LED0	PTD15	Red
D21	USER_LED1	PTD16	

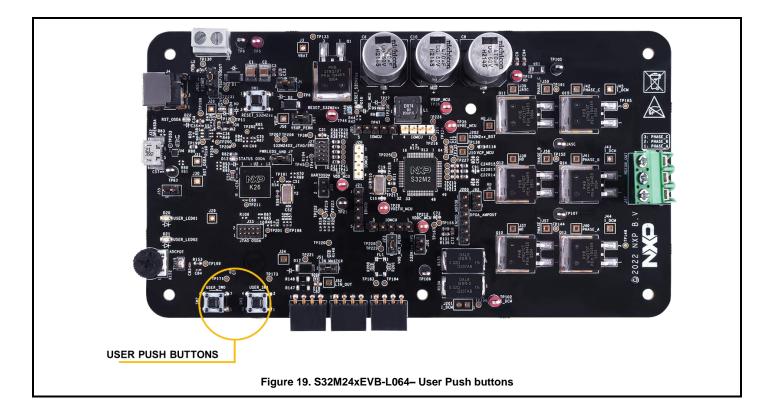


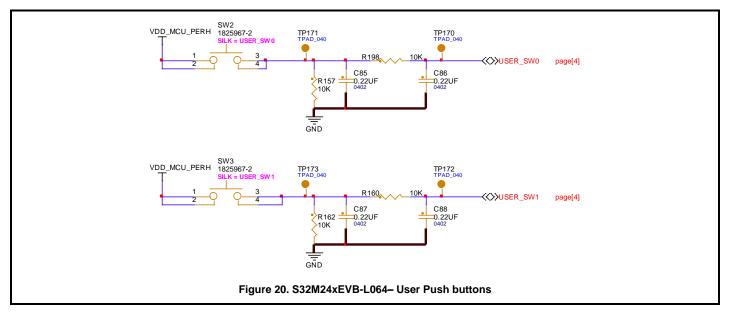
S32M24X-EVB L064 HWUM

REV A1 - 01/2024

© NXP B.V. 2024. All rights reserved

NXP Semiconductors

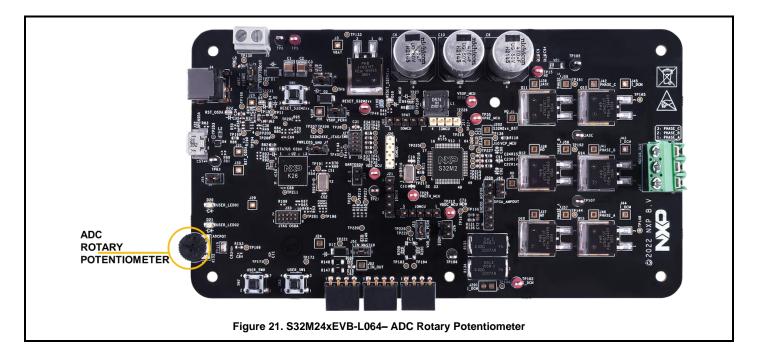


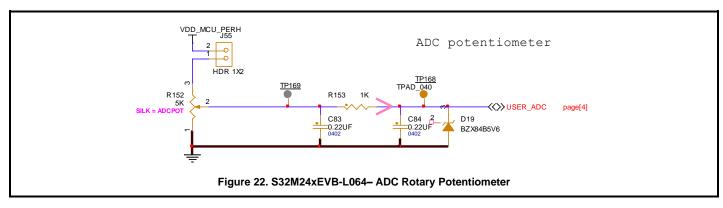

12.2 S32M24xEVB-L064 – User Push buttons

There are 2 push-buttons active high (pulled low, driven to VDD_MCU_PERH), the push button switches (SW2 and SW3) are connected to MCU ports. The switches are connected as follows:

Table 11. User Pushbuttons

Reference	Function	MCU Port	Comments		
SW2	USER_SW0	PTA15	Enabled		
SW3	USER_SW1	PTD0	Enabled		
 There are zero-ohm resistors (R181,R182) on the direct connections between each USER_SWx and the MCU pins. These can be removed if required to isolate or change the User Switch from the default MCU pin. 					


S32M24X-EVB L064 HWUM All Information provided in this document is subject to legal disclaimers


12.3 S32M24xEVB-L064 – ADC Rotary Potentiometer

The EVB incorporates an ADC Rotary Potentiometer (which routes a voltage between 0v to VDD_MCU_PERH) connected to an ADC Input Channel of the S32M24 Microcontroller after a low band filter in order to avoid noise in the signal, specifically ADC1_SE11.

Table 12. User ADC Potentiometer

Reference	Function	MCU Port	Comments
R152	ADCPOT	PTE6	Enabled

S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

13. S32M24xEVB-L064 – Revision history

Table 13. Revision history

Document Revision	Date	Schematic/ Board Number	Schematic/ Board Revision	Changes	Author
х	02/2023	54842	А	Internal version	Luis Rico
А	01/2024	54842	А	Release	Luis Rico
A1	02/2024	54842	А	Document format and block diagram in the Figure 1 updated	Luis Rico

S32M24X-EVB L064 HWUM

All Information provided in this document is subject to legal disclaimers

14. Legal Information

14.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

14.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third-party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third-party customer(s). NXP does not accept any liability in this respect.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — While NXP Semiconductors has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP Semiconductors accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

14.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

S32M24X-EVB L064 HWUM