RNBD350 Bluetooth® Low Energy Module User’s Guide :
A8\ MicrocHIP

Introduction

Microchip’s RNBD350 Bluetooth® Low Energy module has fully-certified 5.2 connectivity in compact form. With
all of its advanced features, it simplifies the integration of Bluetooth Low Energy connectivity into designs,
reducing the need for extensive engineering efforts.

The RNBD350 module utilizes an ASCll-based control interface that communicates over UART, making
configuration straightforward without the need for complex configuration tools or coding. The RNBD350
module supports both peripheral and central Generic Access Profile (GAP) roles, actively scanning for other
connectable devices. In addition, the RNBD350 module supports a standardized Host Controller Interface (HCI)
mode for seamless integration with Linux-based host processors. The module switches dynamically to HCI
mode upon the reception of HCl commands.

Notably, the RNBD350 module fully supports Bluetooth features like Data Length Extension (DLE) and Bluetooth
Low Energy-secured connections, which are enabled by default. DLE increases the Bluetooth Low Energy packet
Protocol Data Unit (PDU) length leading to higher throughput. LE secure connections feature support provides
additional security during pairing against passive eavesdropping.

In addition to these features, the RNBD350 module also embraces Bluetooth 5.x-specific enhancements such
as “Advertising Extension”. This feature expands the possibilities for configuring advertisement data, making it
suitable for various Bluetooth Low Energy beacon applications. Furthermore, the module supports additional
Physical Layer (PHY) options beyond the original 1M, including 2M with double symbol rate (for increased
throughput) and Coded (for extended range).

Features

+ Fully RF-Certified Bluetooth Low Energy Module

* Compact Form Factor

+ On-Board Bluetooth 5.2 Low Energy Stack

+ ASCll Command Interface Over UART

* Host Controller Interface (HCl) Mode

+ ASCll Commands are Backward Compatible with RN487x Family of Modules

+ Beacon Support

+ Built-in Microchip Transparent Profile for UART Data Streaming

+ Over-the-Air (OTA) Remote Configuration

+ Embedded Enhanced Security

+ 2M Uncoded PHY and Long Range (Coded PHY)

+ Extended Advertising

+ Data Length Extensions and Secure Connections

+ Bluetooth Low Energy Privacy 1.2 with Up to Eight Resolvable and Accept Lists
+ UART-Based Device Firmware Update (DFU)

+ Built-in Microchip OTA Profile with Client and Server Role for OTA DFU Execution

- OTA device firmware update

- Host MCU OTA firmware update using RNBD350
+ Integrated 16 MHz POSC
* Supports UART
* 8 GPIOs that Can be Controlled by RN Command

+ 12-Bit Analog-to-Digital Converters (ADC) Successive Approximation Register (SAR) Module for Analog-to-
Digital Conversion

+ Add On Up to Six 16-Bit UUID GATT Services (Public Service), Four 128-Bit UUID GATT Services (Private
Service) and Each Service Includes Up to Eight Characteristic Attributes

+ Supports Bluetooth Low Energy Advertiser, Observer, Central and Peripheral Roles
+ Supports Bluetooth Low Energy GATT Client and Server Roles

+ Supports Up to Six Concurrent Bluetooth Low Energy Connections

* Multi-Link and Multi-Role

+ Remote Command Mode in Multi-Link Connection

+ Secured Connection

+ DTM Test Mode

+ Supports PTA Control

ASCIl Command Interface

The RNBD350 module is primarily controlled through ASCIl commands sent from the host MCU to the UART
interface. These ASCIl commands enable the management of various functions, including but not limited to
connection setup/teardown, accessing Generic Attribute Profile (GATT) characteristics, modifying configuration
settings, reading status and querying status information.

The UART interface on the module can operate in two modes:
+ Command mode - Configured to receive and process ASCIl commands from the host MCU
« Data mode - Facilitates the exchange of data using the “Transparent UART" Bluetooth service

Transparent UART

The RNBD350 module introduces a proprietary GATT service known as “Transparent UART". This service
streamlines the transfer of serial data over Bluetooth Low Energy devices. The RNBD350's Transparent UART
functionality enables the seamless transmission of serial data from its UART interface via a Bluetooth Low
Energy connection, creating an end-to-end data pipe to communicate with another Bluetooth device, such as
the RNBD350 module or smartphone.

Custom/SIG Defined GATT Services

The RNBD350 module possesses the capability to define a total of six public and four private custom defined
GATT services. Each service allows up to eight characteristics.

Note: All of these service definitions are stored in on-board Non-Volatile Memory (NVM) as part of the
module's configuration settings.

Remote Command Console

The RNBD350 module supports Remote Command mode, which allows a remote device to access Command
mode via Bluetooth link. This feature requires the user to first enable the Transparent UART function.

@ MICROCHIP

Table of Contents

INEFOAUCTION. ¢ttt ettt ettt s a e s a et b et b et bt s b e st s b et e r et er e e en e nenennenens 1
FRATUIES .t b e st b bbb b b SR E s b e b bbb s bs e b e st 1
ASCH COMMAN INERITACE. .. ittt e bt a et se et n e nesesnesenes 2
TrANSPAIENT UART ...ttt bbbt a ettt et et e bt e b e e b e e b e s b e s b e e b e b e b e b e b e b e b e aesnennenis 2
CUSTOM/SIG DEfiNEA GATT SEIVICES.iiiuiieuiieiirietintetestete sttt ettt sttt st e st st sesbe et et be e ebe st ebe st sbentsbenesbenesbenees 2
Remote COMMEANG CONSOIE........ciiiirieirctiretrete ettt s a e sa et n e sn e ee 2
I O LU el (<] =T =] el TSROSO 5
1.1, Reference DOCUMENTALION.......coiiireeeieeeee ettt et n e rennes 5
1.2, HardWare Prer@QUISITES.....oeieerieereetereettrteteste ettt ettt ettt sttt ettt ettt s b st sbe st s b et s b et st e e esesesbenesnens 5
1.3, SOfTWAIE Prer@QUISITES. ... cviietiteiiieterte ettt ettt sttt b et be e bbb bbb e b et e bt st ebesbebe st ene st e e sbenenan 5
1.4, ACronyms and ADDIEVIATIONS......ccovveirieirieirieirie ettt ettt ettt ettt se s b sesbe e sbenestenessenessenessenens 5
2. Command Mode and Data IMOGE......coevriirerieieieienteiertetert ettt ettt ettt ettt st be b st b ettt et st e e ebe st sbe st sbenesbenens 7
3. ACCesSING RNBD350 OVEN UARTuiiierieteetestt sttt sttt sttt sttt st et st e s bt st sre et e sse e b e s st e sbeesnesbeensesnnenbesnnennes 8
A, PIN DEIINITION .ttt ettt ettt b et b et bt ekt b bbbt b bbb bbbt b e bt st ene et e et enetan 9
4.1. Bluetooth Low Energy Status Indication Pin 1 (PB3) and Pin 2 (PB7)..cc.ccvviviririnininininienienienienienseaenens 9
4.2, BlUETOOLN STAtUS LED (PB5)...civiiiiiiiiiiiiiiieietecetee et e et cstessteesavsebeessteesaseeateesssseabessaneesssssnbesssssessessssessessseenns 9
A3, ADC (PBT)utietirietirieitsieie ettt ettt ettt st b et ek et b et bt ebe b bt bt e bbbtk e b b ebe b e b et e bbbt b e st s b e st b e st et et et eneeten 9
A4, 1O LVEI CONLIOL ittt s sttt s et sae st sn et sne st 10
Y U 7Y 2 I\, (Yo [T Y el a 1N (2 = 72 TP 10
4.6. UART RX INAICATION (PB4)...uiuirieirieietinietinieiesieteste et ettt ettt ettt ettt s be st b et b e bbb e b be s nenes 10
A7. UART TX INAICAtION (PA2)...cuiteuirieirieiirietrietstetetesteiestese st testebe st bt stesesaesestesesbesesbestssesesbenesbentsbenesbensesensesensenens 10
4.8, RSSIINAICATION (PA3)...eiiiiieieieirtrieiettt sttt ettt sttt b ettt b ettt b bt sa b bttt bbbt nasenenen 10
4.9, PTA FUNCHION....ciiiiiiiiieeecttct ettt ettt ettt st sb s b bbb b ne b e nesnens 1"
5. COMMANA REFEIENCE.....iitiietiieieteteee ettt ettt st et b et s bt s b etk st e bt e bt e s et e bt besesbenesbenesbenesbentenan 12
5.1, COMMEANA DELAIIS....coueuirieiteiitereeee ettt ettt b e b et s be bbbt et b et s b st s be st nbene 12
5.2, System Configuration COMMANGAS......cooeirieirieenieirtetentet ettt sttt sttt ettt sbe st be st be e ebeneebens 13
5.3, GAP COMMANGS...iitiiiiriiirieirieieiet sttt ettt st et s b st et et ese st ebes e ebe st e b et e b et ebessese b esessesersesensesessenessenesbenesbenessenenes 23
5.4. Bluetooth Low Energy GATT/Profile COMMANGS.......ccceciviririnienienienienieieeetetsesesre sttt ssessessesennens 47
5.5. Peripheral COmMMANS.......ccveiieinieieieeeeietste sttt ettt st sttt et e b s b sbe e b e e ns 57
o T T\ (ol SR ES Wl 1Y, Fo To [N (D I 1Y TSSO 62
5.7. DFU COMMANGS..ciiiitiiiiriniereiiinieieiesttresiesest st s sttt bestt st b b est st s b bt se st bebe et saebebest st saebes et sesbebese e sssenenen 71
5.8. Deprecated COMMANGS......ccoevieierieieieieeresesestestestessessessessessessessessessestesseseessssessessessessessessessessessensensensensen 84
5.9. Command Response and Status EVENT ..ottt be s eb e aene s 84
B, HOCI MO ...ttt sttt b et b e bt e bt ettt a et sn et b et saentsre st 88
6.1. HCIVendor Commands @nd EVENES......ccoiiiirirenieeireeieeeiete ettt ettt ettt s be e ee 88
6.2, HOCI DFU PrOCERAUIE.....cuiieiiieiiietiiettstet sttt sttt te sttt s b et be st sbe st sbe e s b et sbe st ebe e ebe st ebentsbenesbentebentebesaesesebensenens 96
7. APPIICALION DEMO SCENAIIOS. ..eiveuieteuirtetrieeeteeet ettt ettt e bt e b et ae bt sae bt s be st s b et st et st e st sbesesbenesbenesbeneebeneebenassenesens 98
7.1. Connecting to the RNBD350 Module Using the Microchip Bluetooth Data Application..........c..cceueuu... 98
7.2. Transparent UART Connection and Data Transfer using Microchip Bluetooth Data App.......ccceeeuee. 106
7.3. Creating and Accessing GATT Services Using UART COMMANGS......ccoeeireereerierenierenieenreseneeesieesienens 114

@ MICROCHIP

7.4, Module t0 MOAUIE CONNECLION.....c.eiiiieieeereeceeete ettt ere st erbeesbeesbeeebeeesaeesbeessseesseesbeesaseesseesseessseenseas 124

7.5 VUL SNITT@I et bbbt bbbt nb bt ae st nnenes 127
8. RNBD350 Device Firmware Update ProCEAUIE.........ccooveirieirieirieerieesieestetstee sttt sesassessesesaesessenesaenes 135
B INEFOAUCTION ...ttt ettt ettt b et bt e b et b et b et b e b b et e b et e b e b ebesbesenbenesbeneas 135
8.2, OTA DFU PrOCESS. ...ttt st sb e st eb e st b s as e s bbbt b e s bt e besabesbeenesreesbe e 136
8.3. Firmware Upgrade Procedure using Microchip RNBD Utility PC TOOL........cccevevvirineninenienienieieeeeeene 139
8.4. Firmware Upgrade Using Mobile APP (MBD)....cccieriiiiiririnineneniesiesiesiesiessessessesessesssessessessessessessessenes 151
9. Appendix A. Bluetooth Low Energy FUNAmMENTals..........ccouecirieirieinieninieinieinieeseeseesiee et ese e 173
9.1. Definition of Characteristic ACCESS COMMANDS......cereireireirieerieerieerieeetee sttt sttt sbe e s seenene 173
10. Appendix B. Transparent UART SErviCe UUIDS.........cccoiririririninenienienientesiestestestesteseesessessessessessessessessessessensensen 176
11. Appendix C: Command Summary QUICK REFEIENCE.......coiciriiriereeeetee ettt 177
12. DOCUMENT REVISION HISTOIY.c.uiiiiiiiiiiiesiteie sttt sttt sttt st ettt s e s e s st e s bt st e sbe e s e sre e b e snnensesneessasnsessens 180
MICFOCHIP INFOIMATION ...ttt ettt st a e s bbb et sk et et et ebe e ebe st e b et ebe st ebesbenesbenens 181
THE MICrOCHIP WEDSITE. ..ottt ettt st st b e et bbb sbens 181
Product Change NOtIfiCatioN SEIVICE......cccciriririririeeiet ettt ettt sttt b et b e be b s 181
(@8 uo] 0 aT=T G] o] oo i (PP TSP P PO PTTOPRORTP 181
Microchip Devices Code ProteCtion FEATUIE.......ccvivireririerierteriesertete ettt ettt sbe st st st s bessensenaeaens 181
LEEAI NOTICE. c.eeuteiieiieiieieeise sttt ettt et ettt et st s bt s bt st e st e sbesbe st e s b e s e b et e st ente st ese e st eseeseeseeseebeebasbesbesbesbesbetensensen 181
TFAARIMAIKS. .ttt b et b et bt b st b e st b et e bt e bt e b et e bt st e st s b eae s b e st b ene ket e b et e b et ebeneebe e beneee 182
QUAIY ManagEmMENT SYSTEIM..c..cuiriiiirieiirieirietrie sttt ettt sttt ettt st ettt et et e b e e e be b ebe st e b e tebesbesesbesesbenesenesenersan 183
WOrldWide SAlES @Nd SEIVICE....c..ciiiiieeiecre ettt sttt ettt s sre e r s 184

@ MICROCHIP

1.2

1.3

1.4

Quick References

Reference Documentation
For further details, refer to the following:

+ Appearance Values Bluetooth” Document (2021-11-24)

+ Bluetooth Core Specification

Hardware Prerequisites
+ RNBD350 Add On Board

Software Prerequisites

* Microchip Bluetooth Low Energy Virtual Sniffer Tool (v1.00)

+ Wireless Protocol Suite (v2.35) from Teledyne LeCroy

Acronyms and Abbreviations

Table 1-1. Acronyms and Abbreviations

AD
ADC
ADV
AES
ASClI
ATT
BAS
CCCD

CMD
DFU
DFUS

DLE
DSADV
DTM
EIRP
ERR
EVK
GAP
GATT
GPIO
HCI
FW
IND
1/0
IRK

LE
LED
MCU
MLDO

@ MICROCHIP

Advertisement

Analog-to-Digital Converter

Advertisement

Advanced Encryption Standard

American Standard Code for Information Interchange
Attribute

Battery Service

Client Characteristic Configuration Descriptor

Command
Device Firmware Update
DFU Update Start

Data Length Extension
Deep Sleep Advertising
Device Test Mode
Effective Isotropic Radiated Power
Error

Evaluation Kit

Generic Access Profile
Generic Attribute Profile
General Purpose I/0
Host Controller Interface
Firmware

Indication

Input Output

Identity Resolving Key
Low Energy

Light Emitting Diode
Microcontroller Unit
Main LDO

https://specificationrefs.bluetooth.com/assigned-values/Appearance%20Values.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/SoftwareTools/Microchip_BLE_Virtual_Sniffer_Tool_v1.00.zip
https://fte.com/support/WPS-download.aspx?demo=X240&iid=X240

......... continued

MLPD Microchip Low-energy Data Profile
MSC Message Sequence Chart

NVM Non-Volatile Memory

OTA Over-the-Air

OTAU Over-the-Air Update

PDS Persistent Data Storage

PDU Protocol Data Unit

PHY Physical Layer

PMU Power Management Unit

PWM Pulse Width Modulation

PTA Packet Traffic Arbitration

RF Radio Frequency

RSSI Receive Signal Strength Indication
RX Receive

SA Set Authentication

SERCOM Serial Communication Interface
SSP Simple Secure Pairing

SIG Special Interest Group

SW Software

TPT Transparent Control Point

TX Transmit

UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

uuibD Universally Unique Identifier
WLAN Wireless Local Area Network

@ MICROCHIP

2. Command Mode and Data Mode

The RNBD350 module mainly operates in two modes:
« Data mode (default)

+ Command mode

By default, the RNBD350 module operates in Data mode. In Data mode, the device advertises its
presence to the nearby central devices. When the RNBD350 module establishes a connection with
another Bluetooth Low Energy device, the devices stay in Data mode and act as a data pipe. Any
serial data sent into the RNBD350 UART is transferred to the connected remote peer device over the
air via transparent UART Bluetooth service. The received data from the remote peer device over the
air via transparent UART connection is displayed via UART.

For configuration or control operation or both, set the RNBD350 module to Command mode. In
Command mode, all UART data is treated as ASCll commands sent to the module’s UART interface.

The following figure illustrates the Command mode and Transparent UART Data mode. The
RNBD350 module can enter and exit Command and Data modes using ASCll commands over UART
or over UART mode switch pin (PB2).

To enter Command mode from Data mode, type the $$$ character sequence. The UART receives a
cMD> prompt to notify the external host about the start of the Command mode. The Data mode
escape character can change from $ to another character using S$ command.

To return to Data mode, enter command --- at the command prompt. The END message display
indicates the end of the command console session.

In addition to using the ASCIl Command mode escape character and the command --- to enter/exit
Command mode, it is possible to use the UART mode switch 1/0 pin to do the same. This method

is more suitable for applications where there is a need for the host MCU to enter and exit the
Command mode.

Figure 2-1. Command Mode and Transparent UART (Data) Mode

RNBD350
---/lUART[Mode Switch

GATT Bluetooth® Low
GATT/Transparent UART Energy Device
. i0S®
HosT K _UART ﬁ . Android™
MCU RNBD350

PIO)
. PC

$$$/UART|Mode Switch

@ MICROCHIP

3. Accessing RNBD350 Over UART

The most common application for the host MCU to control the RNBD350 module is via ASCII
commands. For development and prototyping purposes, using a terminal emulator to send
commands and data over UART is recommended. Any terminal emulator, such as TeraTerm
(Windows®) or CoolTerm (Mac® OS X®), is used to control and configure the RNBD350 module via
UART on the host PC.

With the RNBD350 module connected to a computer and a serial port enumerated for the UART
port, run the terminal emulator to open the COM port using the port settings defined in the
following table.

Table 3-1. Default UART Settings

UART Setting Default Value

Baud rate 115200
Data bits 8
Parity None
Stop bits 1
Flow control Disabled

To enter Command mode, type $$$ into the terminal emulator. When the RNBD350 module enters
Command mode, the RNBD350 module sends the string cMD> via the UART to indicate the start of
the Command mode session.

When in Command mode, valid ASCIl commands are issued to control or configure the RNBD350
module. All commands end with a carriage return <cr>('\r', \x0d).Do notissue any
subsequent command until a response is received for the previous command.

For commands, A0K indicates a positive or successful response, whereas, Exr indicates an error or
negative response. By default, when the RNBD350 module is ready to receive the next command,
the command prompt CMD> is sent to UART.

To return to Data mode, type ---<cr>. Also, in the connected and data channel enabled state, the
RNBD350 module can enter into Data mode. For this, it is mandatory to have the UART transparent
feature enabled. For details on enabling the UART transparent feature, refer to 5.2.1. Default Service
Configure (SS,<hex8>).

Notes:

+ The module supports Fast Data mode. In this mode, the module does not enter Command mode
even if it receives $$3. To enable Fast Data mode, use command SR. For more details, refer to
5.2.15. Set Application Options (SR,<hex16>).

+ The RNBD350 module supports Low Power mode. If the RNBD350 module's low power is
enabled, the host MCU must wake up the RNBD350 module before sending the UART data out.
To wake up the module, pull the UART RX indication pin (PB4) to low.

@ MICROCHIP

4, Pin Definition
For more details, refer to the pin description table in the RNBD350 Bluetooth Low Energy Module Data
Sheet (TBD).

Note: This pin feature is not applicable to the HCI mode.

4.1 Bluetooth Low Energy Status Indication Pin 1 (PB3) and Pin 2 (PB7)

Use both pins to indicate Bluetooth Low Energy connection: Bluetooth Low Energy UART transparent
service status and MCU DFU status.

Table 4-1. Status Indication

Low Low Bluetooth® Low Energy is disconnected
Data transmission channel is closed

High Low Bluetooth Low Energy is connected
Data transmission channel is closed

High High Bluetooth Low Energy is connected
Data transmission channel is opened

Low High MCU DFU mode (local)

Note: By default, the Bluetooth Status Indication feature is disabled in the firmware. Enable this
feature via SR, <hex16>command (SR, 1000). For more details, refer to 5.2.15. Set Application
Options (SR,<hex16>).

4.2 Bluetooth Status LED (PB5)

The Bluetooth status LED (PB5) indicates the Bluetooth Low Energy connection status by specific LED
Flash pattern. See the following pattern description.

+ Standby mode - No Bluetooth Low Energy connection. The RNBD350 module is in Advertisement
or Scan state. Flash one time every three seconds. (ON: 50 ms, OFF: 2950 ms)

+ Linked Mode - Bluetooth Low Energy ACL link is connected no matter central or peripheral role.
Flash two times every 1.5 seconds. (ON: 50 ms, OFF: 150 ms, ON: 50 ms, OFF: 1050 ms)

* MCU DFU Mode - The RNBD350 module is in the MCU DFU procedure. Flash four times every 2
seconds. (ON: 100 ms, OFF: 100 for each time)

Note: By default, the Bluetooth status LED is turned OFF. The user can enable this feature by using
the sk command. For more details on the SR command, refer to 5.2.15. Set Application Options
(SR,<hex16>).

43 ADC(PB1)

The ADC input pin is a dedicated pin where the analog signal can be provided as an input to the
RNBD350 module. The RNBD350 module does the ADC conversion using a fixed reference and
provides the digital value that can be read using the Read ADC input voltage (@Q,4) command.
Prior to initiating the Read ADC input voltage (@,4) command, the user must configure

the factors of voltage detection using the Set ADC Reference Factor (SQ,<hex16>,<hex8>)
command. The factors are used to get the actual ADC voltage. This command expects the reference
voltage and bias voltage percentages as input parameters. For more details, refer to 5.5.9. Read
ADC Input Voltage (@,4) and 5.5.10. Set ADC Reference Factors (S@,<hex16>,<hex8>).

The first step is to supply the analog signal to the PB1 pin, then the set ADC Reference Factors
(S@, <hex16>,<hex8>) command sets the reference voltage and bias voltage percentage. Use the
Read ADC (@, 4) command to read the voltage.

@ MICROCHIP

4.4

4.5

4.6

4.7

4.8

1/0 Level Control

The host MCU can assert the RN command to set some GPIO pins as output pins to set their level or
input pins to read their level.

The I/0 level control on these pins is achieved using the Set Digital Input and Read Port
(1I,<hex16>) and Set Digital Output Port (|0,<hexl16>,<hex16>) commands.For more
details, refer to 5.5.3. Set Digital Input and Read Port (|l,<hex16>) and 5.5.4. Set Digital Output Port
(]O,<hex16>,<hex16>). The GPIO pins that can control using the RN commands are shown in Table
5-31.

UART Mode Switch (PB2)

+ When the host MCU pulls the UART mode switch pin from low to high (rising edge), the RNBD350
module switches to Data mode.

+ When the host MCU pulls the UART mode switch pin from high to low (falling edge), the RNBD350
module switches to Command mode.

+ When the host MCU uses the RN command to switch the mode, the host MCU keeps the UART
mode switch pin to the original setting.

Note: By default, the UART mode switch functionality is not assigned to the PB2 pin. The user can
enable this feature using the SR, <hex16> command, for example, SR, 0002. For more details, refer
to 5.2.15. Set Application Options (SR,<hex16>).

UART RX Indication (PB4)

If the RNBD350 module low power is enabled, the host MCU must wake up the RNBD350 module
before sending out the UART data. For this purpose, use the UART_Rx_Ind pin (pull low to wake-up
the system).

UART TX Indication (PA2)

This dedicated pin is going to be active for some milliseconds prior to UART TX data. The UART TX
indication is to wake up the host MCU prior to UART data so that the host MCU can handle data
correctly. This functionality is helpful in scenarios where the host MCU can effectively wake up from
Sleep mode or Low Power mode by monitoring the UART TX Indication pin of the RNBD350 module.

The user can configure the UART TX indication using the Set UART Tx Indication
(STI, <hex8>,<hex8>) command. For more details, refer to 5.5.13. Set UART TX Indication
(STI,<hex8>,<hex8>).

RSSI Indication (PA3)

Use the RSSI indication pin (PA3) to indicate the quality of the link based on the RSSI level.

The firmware activates the RSSI indication pin to indicate the deviation of the RSSI value

from the predefined threshold level using the Set Event Indication Mask (EIM,<hex16>)
command. The threshold level value can be set using the set Link Quality Indication
(SIL,<1/0>,<hex8>,<hex8>) command. Whenever the RSSI value goes beyond the threshold
or goes below the weak RSSI limit, the firmware activates the event indication pin. Upon receiving
the link quality event, use the Get Signal Strength (M)/(M,<hex16>) command to query the
RSSI value for the specific connection. For more details, refer to 5.5.5. Set Event Indication Mask
(EIM, <hex16>) and 5.5.7. Set Link Quality Indication (SIL,<1/0>, <hex8>, <hex8>).

@ MICROCHIP

4.9 PTA Function
When the PTA (Packet Traffic Arbitration) function is enabled using the “SPTA” command, three
dedicated pins come into play:

« BT_PRIO - This pin is configured as an output, and it serves to request a high-priority action from
the WLAN device. When the BT_PRIO pin is activated, it signals the WLAN device to give priority to
Bluetooth operations.

« BT_ACT - Similar to BT_PRIO, this pin is also configured as an output. When a BT request is
granted and Bluetooth activity occupies the RF (Radio Frequency) resource, the BT_ACT pin is
pulled high. This indicates that Bluetooth is currently active and using the RF resources.

« WLAN_ACT - This pin is configured as an input, and its purpose is to receive the status of WLAN
device activity. It provides information about whether the WLAN device is active or not.

@ MICROCHIP

5. Command Reference

The RNBD350 module provides support for a wide range of ASCIl (RN) commands that facilitate
communication with the host microcontroller. These commands serve various purposes:

+ Altering default device settings

« Configuring Bluetooth Low Energy functionality
+ Controlling peripheral support

« Enabling Device Test mode functionality

This chapter offers a comprehensive explanation of these commands and their practical usage,
complete with illustrative examples.
5.1 Command Details

The ASCIl command syntax for the RNBD350 module consists of a keyword followed by optional
parameters. This format allows users to interact with the module by sending specific commands in a
structured manner.

+ ASCll commands are divided into multiple groups:
- System Configuration Commands

- Gap Commands
+ General

+ Advertising
+ Scan

+ Connection
+ Security

- Bluetooth Low Energy GATT Service/Profile Commands
* Generic Access Service Setting

+ Device Information Service Setting
* GATT Operation on Server Role
* GATT Operation on Client Role
+ Data Transmission For Multi-link
- Peripheral Commands
- DFU Commands
- Device Test Mode (DTM) Command
- HCl Feature
+ All commands contain one, two or three case-insensitive characters
+ Delimit command and any argument with a comma
« Text data is case sensitive, such as Bluetooth name
+ All commands end with a carriage return (<CrR>, '\r', \x0d)

+ Get commands return the value requested by the corresponding command to be retrieved. Most
of the other commands return either A0K (<AOK><CR><LF>), which indicates a positive response,
or Err (KErr<CR><LF>) as a negative response.

All commands must be used in Command mode, except $$$, which is used to enter Command
mode from Data mode. All input UART characters are parsed as command format and all characters
are raw data in Data mode.

@ MICROCHIP

Most configuration changes made by set commands are stored in the Persistent Data Storage (PDS)
and survive the reboot or power cycle. For certain commands, the configuration changes are going
to take effect after a system reboot. For the majority of commands, memory stores the changes
without a system reboot. However, for certain commands, the system reboot is necessary. For
commands that need the system reboot, a special note is placed.

For a list of all commands, refer to 11. Appendix C: Command Summary Quick Reference.

5.2 System Configuration Commands

5.2.1 Default Service Configure (SS,<hex8>)
Format: SS, <hex8>

This command sets the default services that are supported by the RNBD350 module in the GAP
server role. The input parameter is an 8-bit bitmap that indicates the services that are supported

in the server role. When a service is supported in the server role, it means that the host MCU is
responsible for providing values of all characteristics within those supported services and to provide
client devices access to those values upon request.

After modifying the service bitmap, reboot the device or use the ST command to make the new
services effective. The following table provides details about the 8-bit bitmap. For information on
Bluetooth services, go to www.bluetooth.com/specifications/specs/.

Table 5-1. Bitmap of Services

Device information 0x80
Transparent UART 0x40
Reserved Others
Default: co
Example: Ss,CO // Support device info and UART transparent services
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The PDS stores the parameter, and the user can bring it into immediate effect using the s1 command or reboot.

5.2.2 Get Connection Status (GK)
Format: Gk

To obtain the current connection status of the RNBD350 module, use the “Get Connection Status”
command, GK.

This command does not require any input parameters. Depending on the module's current
connection status, the command provides different outputs:
1. If the RNBD350 module is not currently connected to any device and the user uses the command
without the optional parameter, the output will be “none”.
2. If the RNBD350 module is connected to a device, the Gk command returns the following
connection information:
a. <Peer BT Address>,<Address Type>,<Connection Type>, where
* <Peer BT Address> -Isthe 6-byte hex address of the peer device

+ <Address Type> - Is either 0 for public address or 1 for random address

* <Connection Type> - Specifies if the connection enables the UART transparent
feature, where 1 indicates UART transparent is enabled and 0 indicates UART
transparent is disabled

@ MICROCHIP

https://www.bluetooth.com/specifications/specs/

Example: GK // Get current connection status
Response: None or Err /1 If not connected

<Peer BT Address>, <Address // If connected
Type>, <Connection Type>

GK, 0071 // Get the current connection status of the dedicated
connected device for multiple links. <hex16> is the
connection handle of the remote-dedicated device.

5.2.3 Echo (+[,<text>])
Format: + [, <text>]

Command + without a parameter toggles the local echo ON and OFF. If sending the + command in
Command mode without a parameter, all typed characters are echoed to the output. Typing + again
turns local echo OFF. If an input parameter is attached to the command +, the input parameter is
directly echoed back to UART.

Default: OFF

Example: + // Turn local echo on

Response: Echo ON // Echo ON success
Echo OFF // Echo OFF success
<text> —

5.2.4 Enter Command Mode (5)
Format: $$$
This command makes the RNBD350 module enter Command mode and display the command
prompt. The device passes the characters as data, and enters the Command mode if it sees the sss
sequence. If the Command mode guard bit is set using the SR command, the device checks if there
are any bytes before or after the $$$ characters in a one-second window, the device does not enter
Command mode and these bytes are passed through. For more details on the SR command, refer to
5.2.15. Set Application Options (SR,<hex16>).

The user can change the character string used to enter the Command mode using the s$ command.
For more details on the s$ command, refer to 5.2.6. Set Enter Command Character (S$,<char>).

The UART receives a CMD> prompt indicating the start of a command session.

Example: $$3 /I Enter Command mode

Response: CMD> // 1f command prompt is enabled

5.2.5 Exit Command Mode (---)
Format: - —-

This command forces the RNBD350 module to exit from Command mode and enter into Data mode.
After successful execution of the command, the RNBD350 module responds with the END response.

Example: -—= // Exit Command mode
Response: END // End Command mode

5.2.6 Set Enter Command Character (S$,<char>)
Format: s$, <char>
This command sets the Command mode character, where <char> is a single character in the three
character pattern. This setting enables the user to change the default character to enter Command

mode ($$$) to another character string. For restoring the factory defaults, configure the enter
command character as $$5.

@ MICROCHIP

5.2.7

5.2.8

5.2.9

5.2.10

Default: $

Example: SS, # /1 Set ### as string to enter Command mode
Response: AOK // Success
Err // Syntax error or invalid parameter

Note: The PDS stores the parameter, and the user can bring it into immediate effect without a reboot.

Set Status Delimiter (S%,<pre>,<post>)

Format: s, <pre>, <post>

This command sets the pre and post delimiter of the status string from the RNBD350 module to the
host controller. The pre and post delimiter are up to four printable ASCII characters.

« If no parameter is given to the post delimiter, the post delimiter is cleared.

+ If no parameter is given to the pre-delimiter, both the pre- and post-delimiters are cleared and
the RNBD350 module does not send any status string to the host controller, except some status
strings including wv, INDI, NOTI, KEY REQ, KEY, DATA and advertising report status strings.

Default: %
Example: S%, <S5, #> /1 Set pre-delimiter to <$ and post-delimiter to #>
// When the output status string is Reboot, instead
/1 of %REBOQOT%, the output is <$REBOOT#>
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The PDS stores the parameter, and the user can bring it into immediate effect without a
reboot.

Get Configuration (G<char>)
Format: G<char>

This command displays the stored settings for a command where <char> is a command name (S
prefix command).

Example: GA // Return to Authentication mode set by command sa

Response: 2 /1 Value of the settings, the setting of sa is 2 for example

Query Firmware Version (V)
Format: v

This command displays the firmware version.
Example: v // Display firmware version

Response: <Version String>

Get Local Information (D)
Format: D

Use this command to display critical information of the current device over UART. Command D has
no parameter.

Example: D // Dump information

@ MICROCHIP

Response: After issuing command D, the user can see the following information:
Device MAC address
Device name

Connected device - MAC address and address type (public or random) if connected or no if there is no active
connection

Authentication method - Device I/0 capability set by command sa
Device features - Device features set by command sr
Server services - Bitmap of predefined services that are supported as server role, set by command ss

The fixed pin code, if using

5.2.11 Remote Command Mode Control (!,<0,1>[,<hex16>])
Format: !,<0,1>[,<hex16>]

Remote Command mode control is a special mode where the RNBD350 module allows the user

to execute commands in a particular RNBD350 module from a connected peer device over a
transparent UART connection. This feature allows control of an RNBD350 module without the use of
a host microcontroller remotely either from another RNBD350 module or from a mobile application.
This way, it provides a method to enable standalone implementation without the host MCU for the
remote device.

A local device can use the Remote Command mode control to get access to the remote device
(module) to access and control all its I/0 ports. The command sent from the connected remote
device is executed and the result is sent back to the local device. All application logic is performed
locally without the need for any programming or application logic to run on the remote device.

The user can achieve the Remote Command mode control functionality by making use of the
transparent UART service. Therefore, it is necessary to enable the UART transparent service using
the ss command before accessing the Remote Command mode control feature. There is an optional
parameter to assign the connection handle in Remote Command mode under multiple links. This
parameter is not needed for the Exiting mode. When RNBD350 performs Remote Command mode
under multiple links as the client, it controls peer devices as servers one by one. That is, the client
exits Remote Command mode before asking another peer device to enter Remote Command mode.

Command ! controls the remote command feature. It expects one parameter, either 1 or 0.

The input parameter 1 enables the Remote Command mode control and the device automatically
enters Remote Command mode. The user can achieve the Remote Command mode control via
transparent UART service. It is mandatory to provide the !, 1 command while staying in Transparent
UART mode. In Remote Command mode control, the command prompt cMD> changes to RMT>. The
remote device side displays the RMT CMD ON.

If the link between two RNBD350 modules is not secured and bonded, issuing of the !, 1 command
is considered transparent UART data and is directly passed to the remote device through the data

pipe.

Command ! is only effective under the following conditions:

+ Both local and remote devices support the UART transparent feature.
+ The two devices are already connected, secured and bonded.

Upon receiving the request to start the Remote Command session, the RNBD350 module accepts
the request if the following conditions are met:

* The Bluetooth Low Energy link between devices is secured and bonded.

+ The first 4 bytes of the local fixed PIN code (configured using sp command) match those of
the peer device. For more details on the sp command, refer to 5.3.5.2. Set Fixed Pin Code
(SP,<4/6 digit pin>). To strengthen the security, in RNBD350 v1.1 and later version, the command

@ MICROCHIP

5.3.5.12. Set Remote Command Mode Password (SPW,<text>) provides the means to set the
password, the max length being 32 bytes. The 4-byte PIN code comparison is retained to
maintain compatibility with older products if the password is null.

If the PIN code or password are not met, the Bluetooth Low Energy link disconnects immediately.

To exit from the remote command mode, issue the $$$ command. This will put the device into
command mode, and the device will be ready to accept further commands. With the device in
command mode, issue the !, 0 command to disable the remote command mode. The remote
device, then, exits Remote Command mode with a response of RMT CMD OFF at the remote device

side.
Example: 1,1 // Enter Remote Command mode
1,0 // Exit Remote Command mode
1,1,0071 // Ask the Bluetooth® Low Energy which handle 0x0071 to
enter Remote Command mode
Response: RMT> /1 Successfully enters Remote Command mode
%$DISCONNECT%, <connHandle> // At initiator side, if the fixed security pin is different in
both devices
ERR_RMT CMD<CR><LF> // At Remote side, if the fixed security pin is different in
%$DISCONNECT% both devices
AOK // Successfully exits Remote Command mode
Err // Bluetooth Low Energy link not secured

Note: The command is not supported in multiple links.

5.2.12 Factory Reset (SF<1,2>)
Format: sF, <1, 2>

This command resets the configurations into the default factory settings, and the parameter is
determined to clear private service and characteristics created using the pS and PC commands.

+ Parameter is set to 1 - This command does not delete the private service and characteristics.

+ Parameter is set to 2 - Resets all the configurations into factory default including clearing the
private service table.

Example: SF,1
Response: Reboot after Factory Reset //Reboot
Err // Syntax error or invalid parameter

Note: This command causes an immediate reboot after invoking it.

5.2.13 Shutdown (0,0)
Format: 0, 0

Use this command to enter the Shutdown state. The system stays in Extreme Deep Sleep (XDS)
mode in this state, and it consumes extreme low power. A hard reset or pulling the UART_RX_IND
(UART RX Indication, PB4) pin low can bring the system back to Active mode. The following figure
illustrates the wake-up timing of the RNBD350 module using the UART_RX_IND (UART RX Indication,
PB4) pin.

@ MICROCHIP

Figure 5-1. Wake-Up the RNBD350 Module from XDS Timing Diagram

UART_RX Start UART_RX End

UART_RX_IND

HT1 :

nonnannAnANNr

Note: T4: The time prior to UART data. This time must be greater than 25 ms.

Example: 0,0
Response: AOK /1 Success
Err // Syntax error or invalid parameter

5.2.14 Reboot (R,1)
Format: R, 1

This command forces a complete device reboot (similar to a reboot or power cycle). It has

one mandatory parameter of 1. After rebooting the RNBD350 module, all setting changes made
previously take effect. Rebooting the RNBD350 module also works as a method to save the settings
made previously for a certain command.

Example: R,1 // Reboot device
Response: Rebooting // Rebooting
$REBOOT% // Status string

5.2.15 Set Application Options (SR,<hex16>)
Format: SR, <hex16>

This command sets the supported feature of the RNBD350 module. The input parameter is a 16-bit
bitmap that indicates the supported features.

Note: After changing the features, a reboot is necessary to make the changes effective.

The following table provides details about the bitmap of features.

Table 5-2. Bitmap of Features

Enable Flow Control 0x8000 If set, the device enables hardware flow control. A reboot is necessary to make the
changes effective.

No Prompt 0x4000 If set, the device does not send prompt cMD> when the RNBD350 module is ready to
accept the next command. If cleared, the device sends out prompt cMD> when it is
ready to take the next command.

Fast Mode 0x2000 If set, no checking of the configuration detect character in transparent UART mode
is done. Instead, to enter Command mode, the RNBD350 module depends on the
pin configured as the UART mode switch.

@ MICROCHIP

........... continued

Enable Pin Status
Indication

No Connect Scan

No Duplicate Scan Result
Filter

Passive Scan

UART Transparent
Without ACK

Reboot After
Disconnection

Disable to Drop Received
Data in Command Mode
of Single

Enable Network Privacy
Mode

No Response of IE
Command

Command Mode Guard

No Bluetooth® Low
Energy Advertising

Command Mode Switch
by Pin (PB2)

Enable Bluetooth Status
LED (PB5)

@ MICROCHIP

0x1000

0x0800
0x0400

0x0200

0x0100

0x0080

0x0040

0x0020

0x0010

0x0008

0x0004

0x0002

0x0001

If set, the pin status indicator is enabled immediately and the RNBD350 module
triggers GPIOs (PB3 and PB7) to indicate the RNBD350 module status. For more
details, refer to 4.1. Bluetooth Low Energy Status Indication Pin 1 (PB3) and Pin 2
(PB7).

If set, no connectable advertisement shows up in the scan result.

If set, the RNBD350 module does not filter out duplicate scan results. The
recommendation is that this bit is set if the RNBD350 module expects a beacon
or a peer device that dynamically changes its advertisement.

If set, the RNBD350 module performs a passive scan instead of a default active
scan.

If there is a credit base flow control in UART Transparent, the device uses write
without response for UART Transparent and the device uses a write request for
UART Transparent when the credit number is zero.

If there is not a credit base flow control in UART Transparent, the device uses a write
request for UART Transparent.

If set, the RNBD350 module reboots after disconnection.

If set, do not drop the received data in the Command mode of a single link.

If set, the RNBD350 module uses the network Privacy mode. The peer device must
support privacy and use the resolvable private address. Otherwise, it fails to create
a connection with the RNBD350 module.

If set, the RNBD350 module does not send the response when the host MCU sends
data in a specific connection by I command. The Err still returns if the parameters
of the command is wrong.

If set, the device sees any bytes before or after the s characters in a one-second
window, the device does not enter Command mode and these bytes are passed
through.

If set, the Bluetooth® Low Energy advertising is not enabled automatically after
power-on.

If set, it can use the specific pin to switch Command mode and Data mode.
When the host MCU pulls the UART mode switch pin from low to high (rising edge),
the RNBD350 module switches to the Data mode.

When the host MCU pulls the UART mode switch pin from high to low (falling edge),
the RNBD350 module switches to the Command mode.

If set, the LED is enabled and LED function is effective after reboot.
To indicate the Bluetooth Low Energy connection status by specific LED flash
pattern, see the following pattern description:

+ Standby mode

- No Bluetooth Low Energy connection. The RNBD350 module is in
Advertisement or Scan state. Flash one time for every three seconds.

- ON-50ms
- OFF-2950 ms
* Linked mode

- Bluetooth Low Energy ACL link is connected whether central or peripheral
role. Flash two times for every 1.5 seconds.

- ON-50ms

- OFF-150 ms
- ON-50ms

- OFF-1050 ms

Default: 0000

Example: SR,A000 // Enable hardware flow control and Fast mode
Response: AOK // Success
Err /1 Syntax error or invalid parameter

Note: The PDS stores this parameter.

5.2.16 Set Debug Log (SLOG,<hex8>)
Format: SLOG, <hex8>
Use this command to configure the options for the debugging log. The logs are routed to the second
UART port with 921600 baud rates. The debug log collection feature helps the user to debug the

issues by looking at the Bluetooth Low Energy packet exchanged Over-the-Air (OTA) and put forward
the opportunity to resolve the issue faster by means to sharing the collected log.

The input parameter is an 8-bit bitmap. The following table provides details that indicate log options.
After changing this setting, a reboot is necessary to make the changes effective.

Table 5-3. Bitmap of Log Options

LL high priority 0x01 If set, the firmware makes the trace log of link layer high priority information available.
information
LL low priority 0x02 If set, the firmware makes the trace log of link layer low priority information available.
information
Stack trace log 0x04 If set, the firmware makes the trace log of stack layer available.
Virtual sniffer 0x08 If set, the virtual sniffer will be enabled. Note that this feature cannot be enabled if
any one of the above three options are enabled. For more details, refer to 7.5. Virtual
Sniffer.
Invalidate virtual sniffer ~ OxFF If all bits are set, it invalidates the virtual sniffer feature and cannot be enabled any
feature more except with a factory reset to reset the settings.
Default: 00
Example: SLOG, 07 // Enable all trace log
Response: AOK // Success
Err // Syntax error or invalid parameter

Note: The PDS stores this parameter. A reboot is necessary to make the changes effective.

5.2.17 Get Debug Log Setting (GLOG)
Format: GLOG

This command is to retrieve the setting of the debugging log. For more details on the option bitmap,
see Table 5-3. If the virtual sniffer feature is invalidated by setting all the bits, the corresponding bit
of the virtual sniffer is always cleared.

Example: GLOG // Get the log setting
Response: 07 /1 Enable all trace log

5.2.18 Get Silicon Version (VOS)
Format: vos

This command requests the silicon version. The RNBD350 module responds back with the silicon
version.

Example: VoS /1 Query the silicon version

@ MICROCHIP

5.2.19

5.2.20

5.2.21

Response: 00 /1 Silicon version is 0

Set Vendor Data (SVD,<text>)
Format: svD, <text>

This command allows the host MCU to store customized data, which is up to 64 alphanumeric
characters.

Example: SVD, vendorDatal23 // Store the text vendorDatal23
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: This parameter is stored in PDS and is effective immediately.

Get Vendor Data (GVD)
Format: GvVD

This command responds back with stored vendor data.

Default: null
Example: GVD // Retrieve stored vendor data
Response: null // No vendor data
vendorDatal23 // Return the vendor data “vendorData123"

Set Pin Function (SW,<hex8>,<hex8>)
Format: sw, <hex8>, <hex8>

This command is used to configure pin functions. It expects two input parameters.

+ The first parameter is an 8-bit hex of the pin index, as shown in Table 5-4, which displays the pin
indexes.

« The second parameter is an 8-bit hex representing the function assigned to the pin, and the
supported functions are enumerated in Table 5-5.

+ Users have the option to choose a specific function for a dedicated pin using these two
parameters.

+ When the PTA function is enabled, PA3, PA8 and PA9 are reserved for PTA pins.

+ Ifthe selected pin is occupied by the PTA function with PTA function enabled or if the selected pin
is set to the PTA function, RNBD350 will respond with an error message.

+ Inthe scenario where the selected pin is assigned a specific function and another pin already has
that specific function, the other pin will be set to the none function.

Table 5-4. Pin Index and RNBD350 Pins

RNBD350 Pins Default Function

00 PA3 GPIO control

01 PA8 Event indicator

02 PA9 UART mode switch

03 PA10 Bluetooth® Low Energy status indicator 1/2
04 PB4 UART TX indicator

05 PB5 Status LED

06 PB8 Bluetooth Low Energy status indicator 2/2

@ MICROCHIP

21

5.2.22

5.2.23

5.2.24

5.2.25

Table 5-5. Configurable Functions

Function Index Function Description

00 None
01 Bluetooth® Low Energy status indicator1/2
02 Bluetooth Low Energy status indicator 2/2
03 Status LED
04 UART TX indicator
05 UART mode switch
06 Event indicator
07 PTA function (Read-only)
Example: Sw, 03,06 // Assign pin PA10 to the event indicator function
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The parameters of sw command are stored in PDS.

Get Pin Function (GW,<hex8>)
Format: G, <hex8>

This command is utilized to query the pin function for a specific pin, and it will respond with the pin
function as outlined in Table 5-5. The input parameter is an 8-bit hex representing the pin index, as
indicated in Table 5-4. If the specified pin has both PTA function and another function and the PTA
function is enabled, the specific pin will display the PTA function instead of the other function.

Example: Gw, 03 /1 Query pin function of pin PA10
// Response “01” implies Bluetooth® Low Energy status
indicator 1/2

Response: AOK /1 Success
Err // Syntax error or invalid parameter
Set SW PTA (SPTA,<0,1>)

Format: spTa, <0, 1>

This command is used to enable/disable SW PTA (Software Packet Traffic Arbitration) feature. The
SW PTA is an external co-existence mechanism that helps reduce packet collisions between coupled
devices using different protocols, like Wi-Fi and Bluetooth/Bluetooth Low Energy.

Example: SPTA, 1 // Enable SW PTA feature
Response: AOK // Success
Err /1 Syntax error or invalid parameter
Get SW PTA Setting (GPTA)

Format: GPTA

This command is used to get the SW PTA setting.

Example: GPTA // Get SW PTA setting
Response: 1 // SW PTA is enabled
Err // Syntax error or invalid parameter

Set HCI Determination (SH,<0,1>)
Format: sH, <0, 1>

This command is used to enable/disable the determining scheme to enter the HCl mode:

@ MICROCHIP

22

5.3

5.3.1
5.3.1.1

5.3.1.2

5.3.1.3

* 1:Enable HCl mode determining scheme
+ 0: Disable HCI mode determining scheme

The determining scheme is to check the first command format to judge if the RNBD350 module is
in HCl mode or RN application after reboot. When the RNBD350 module enters HCl mode, it will

be recorded into PDS and invalidate the determining scheme. The GE command will navigate to the
Get_Configuration.

Example: SH, 1 /1 Enable HClI mode determining scheme
Response: AOK // Success

Err // Syntax error or invalid parameter
Notes:

+ The command is supported in RNBD350 v1.1 and later.
+ The parameter of SH command is stored in PDS.

Gap Commands

General

Set Device Name With Address (S-,<text>)
Format: s—-, <text>

This command sets a serialized Bluetooth name for the device, where <text> is up to 15
alphanumeric characters. This command automatically appends the last two bytes of the Bluetooth
MAC address along with (underscore) to the name, which is useful for generating a custom
name with unique numbering. This command does not have a corresponding get command.

Default: N/A
Example: S-,MyDevice /1 Set the device name to MyDevice_XXXX
Response: AOK // Success

Err // Syntax error or invalid parameter

Note: This parameter is stored in PDS and is effective after restarting advertisement.

Set Device Name (SN,<text>)
Format: sN, <text>

This command sets the device name, where <text> is up to 20 alphanumeric characters.

Example: SN, MyDevice // Set the device name to MyDevice
Response: AOK // Success
Err // Syntax error or invalid parameter

Note: The PDS stores this parameter and is effective after restarting advertisement.

Get Remote Device Name (GNR[,<hex16>])
Format: GNR

This command, without any parameter, finds the peer device name of the last connected device for
a single link. If there are multiple links, the command with a connection handle parameter finds the
peer device name of the dedicated connection. This command is recommended for use only after a
successful connection exists with a peer device. The command responds with an error message if it
is issued before an active connection link.

@ MICROCHIP

23

Example: GNR // Get the remote device name of the last connected device
// For single link

GNR, 0071 // Get the remote device name of the dedicated connected
device for multiple links

Response: <Remote Device Name> // If connected

Err // Not connected yet
Note: This command is only for the client role.

5.3.1.4 Set RF Output Power (SGA,<0-8>/SGC,<0-8>)

5.3.1.5

5.3.1.6

Format: sGa, <0-8>/SGC,<0-8>

Command sGa and sGc adjust the output power of the RNBD350 module under advertisement and
connected state, respectively. The input parameter is an eight-bit hexadecimal value, whose unit is
dBm, assigned to the RF TX output power. The valid output power is from -25(0xE7) dBm to 15(0x0F)
dBm. The following table provides details about the approximate output power (in dBm) for each
parameter value. There can be a variation in output power based on the individual calibration of the
module and the enclosure where the module is placed.

Default: OA(SGA), OF(SGC)

Example: SGA, 01 // Set advertisement RF output power to 1 dBm
SGC, FF // Set connection RF output power to -1 dBm
SGA,E7 // Set advertisement RF output power to lowest

Response: AOK // Success
Err // Syntax error or invalid parameter

Notes:

« The PDS stores these parameters. The parameters are effective immediately. The baseband can re-assign the setting if
the setting does not match the range from baseband.

* The set output power value in this command is Effective Isotropic Radiated Power (EIRP) of the module, in other words,
RF power from the device (upto 12 dBm) + antenna gain (3dBi) antenna gain.

Get Signal Strength (M) / (M,<hex16>)
Format:M / M, <hexl6>

Use command M to get the signal strength of the last communication with the peer device. Use
the signal strength to estimate the distance between the device and its remote peer. In the case
of multi-link connections, this command accepts an optional parameter to get signal strength for a
connection with a particular peer device. The optional parameter expected in this scenario is the
connection handle for the particular connection.

The return value of command M is the signal strength in dBm.

Example: M // Check the signal strength of the last communication with peer device
M, 0071 // Check the signal strength with the device with connection handle 0071
Response: RSSI // Signal strength reading

Err // Not connected

Low Power Control (SO,<0,1>)

Format: so, <0, 1>

Command so enables or disables low-power operation of the RNBD350 module. It expects one
single digit as the input parameter.

+ Ifthe input parameter is ‘0’, the RNBD350 module runs without low-power operation and UART is
active all the time.

@ MICROCHIP

24

+ If the input parameter is ‘1’, the RNBD350 module enables Low-Power mode and UART is
operational to save power.

It is necessary to wake up UART by pulling the UART_RX_IND (UART RX Indication, PB4) pin low

from the host MCU before the host MCU transmits data to the RNBD350 module. The UART_RX_IND
(UART RX Indication, PB4) must be active longer than 2 ms prior to UART data to make the RNBD350
module ready to receive data.

Figure 5-2. Wake Up RNBD350 from Sleep Mode Timing Diagram

UART_RX Start UART_RX End
UART RX_IND : :
UART_RXD | \ \ \ ¥

Note: T, - The time prior to UART data. This time must be greater than 2 ms.

Default: 0 // Low-power mode is disabled
Example: SO, 1 // Set RNBD350 to operate under Low-Power mode
Response: AOK // Success

Err // Syntax error or invalid parameter

Note: The parameter of the so command is stored in PDS.

5.3.1.7 Read Local TX Power (MTP,<hex16>,<hex8>)
Format: MTP, <hex16>, <hex8>

Use this command to read local transmission power and accept two parameters. The first parameter
is the 16-bit connection handle to indicate a specific Bluetooth Low Energy link, and the second
parameter is the 8-bit PHY setting.

Table 5-6. PHY Setting

01 1M PHY

02 2M PHY

03 Coded PHY S8

04 Coded PHY S2

Example: MTP, 0071, 02 // Read local transmission power

Response: 02,05 /1 Current transmission power is 2 dBm and the max
transmission power is 5 dBm

Err /1 Syntax error or invalid parameter or no Bluetooth Low

Energy link

Note: Use this command only when the Bluetooth Low Energy connection(s) exist.

25

@ MICROCHIP

5.3.1.8 Read Remote TX Power (MRTP,<hex16>,<hex8>)

5.3.2
5.3.2.1

Format: MRTP, <hex16>, <hex8>

Use this command to get remote transmission power. There are two parameters, the first one is the
16-bit connection handle to indicate a specific Bluetooth Low Energy link and the second parameter
is the 8-bit PHY setting. If the remote side supports the remote control feature, the status report,
$RMT TX POWERS, with values that are the connection handle (16-bit hex), PHY (8-bit hex), power
level (8-bit hex) and delta (8-bit hex) are reported. For more details on the remote control feature,
refer to the Bluetooth Core Specification. The unit of power level and delta are dBm, and they are
signed values.

Table 5-7. PHY Setting

01 1M PHY
02 2M PHY
03 Coded PHY S8
04 Coded PHY S2
Example: MRTP, 0071,02 // Read remote transmission power
Response: AOK —
Err /1 Syntax error or invalid parameter or no Bluetooth® Low
Energy link

$RMT_TX_POWER, 0071,02,03,01% //Connection handle is 0x0071, 2M PHY
// Power level is 3 dBm
// Deltais 1 dBm

Note: Use this command only when the Bluetooth Low Energy connection(s) exist. If the remote control feature is not
supported in remote side, it returns the error response.

Advertising

Start Advertising (A[,<hex16>,<hex16>,...])
Format: A [, <hex16>,<hex16>,<hex8>,<hex8>]

Use this command, 2, to start an undirected connectable advertisement. The optional parameters
follow command 2, which means the user can issue the command 2 with or without parameters.
By default, or when command 2 is issued without any parameter, the advertisement is set as a fast
advertisement at first (advertising interval for fast advertising is 20 ms), followed by a low-power
slow advertisement after 30 seconds (advertising interval for slow advertising is 961 ms).

Two optional 16-bit hex parameters follow command 2, which indicate the advertisement interval
with a unit of 0.625 ms and a total advertisement time with unit of 10 ms, respectively. The range of
advertisement interval is from 0x20 (20 ms) to OxFFFF, and the range of total advertisement time is
from 0x00-0xFFFF.

The advertisement stops after completion of the set total advertisement time with a status string
$ADV_TIMEOUT%. The optional second parameter must be larger than the first parameter in actual
time. When the command 2 is issued only with the first optional parameter (advertisement interval),
the advertisement timeout is no longer effective and the advertisement with interval parameter
settings lasts forever.

The A command in the RNBD350 module provides the option to start two different sets of
advertisements. By default, the first set of advertisements is a legacy advertisement, and the second
set of advertisements is for a beacon or extended advertisement.

As per the requirement, the user can select the desired advertisement among both or can start two
advertisements at the same time.

@ MICROCHIP

26

5.3.2.2

The third parameter in the 2 command indicates the advertising set number. The number of sets
can indicate the starting advertisement number, and the value of the parameter is 01 or 02. The

value 01 indicates the initiation of one advertisement, and value 02 indicates the initiation of two
advertisements.

The fourth parameter in the 2 command indicates the advertisement index. When the number of
advertisements is 2, the advertisement index must be 00. This will start two advertisements. The
index number must be 00 or 01 when the set number is 1.

When the advertisement index is 00, it will start the first set of advertisements, and the
advertisement index of 01 will start the second set of advertisements. When the total advertising
time is not 0 and after the total advertising time has elapsed, the advertisement is stopped and it
shows a status report, %ADV_TIMEOUT%, to indicate advertising timeout.

Default Interval: 0200 (320 ms), Duration: 0000 (No timeout), 01, 00
Example: A,0050,1770 // Start the first advertisement with interval of 50
milliseconds for 60 seconds
A,0050,1770,01,01 // Start the second advertisement with interval of 50
milliseconds for 60 seconds
Response: AOK // Success
Notes:

+ The parameters of A command are stored in PDS.

* When both advertisement sets are enabled, the second advertisement set must be beacon
(non-connectable ADV).

Set Advertisement Data (IA/IS/NA/NS)
Format:

IA,<hex8>,<Hex>

IS,<hex8>,<Hex>

NA, <hex8>, <Hex>

NS, <hex8>, <Hex>

Commands 12, 1S and N3, NS set the legacy advertisement payload and scan the response payload
format, respectively. The second letter in the commands indicates the type of information to be
changed. The letter A indicates changes to advertisement and letter s for scan response. The
legacy advertisement is considered the first advertisement set in the A command. Thus, using

this set advertisement data command means it is possible to set advertisement data of the first
advertisement mentioned in A command.

All advertisement and scan responses are composed of one or more Advertisement (AD) structures.
Each AD structure has one byte of length, one byte of AD type (see the following table) and AD data.

The set of commands either appends an AD structure or removes all AD structures, depending on
the first parameter. The total bytes in the advertisement payload contributed by one or more AD
structures, which includes the one byte of length, one byte of AD type and AD data, must be less
than or equal to 31 bytes.

Commands starting with letter T make the changes immediately effective without a reboot. The
changes are saved into PDS only if other procedures require permanent configuration changes.
This command is suitable to broadcast dynamic data in the AD structure. On the other hand,
commands starting with letter N make permanent changes saved into PDS. They also make the
changes immediately effective without a reboot.

The first parameter is the AD type. Bluetooth Special Interest Group (SIG) defines AD types in the
assigned number list. If the AD type is set to letter 7, all AD structures are cleared. The following

@ MICROCHIP

27

table lists the commonly used AD types. For more details on the assigned number list, refer to the
Bluetooth Core Specification.

The second parameter is the AD data. AD data have various lengths and follow the format defined in
the Bluetooth SIG supplement to the Bluetooth Core Specification.

The user can issue the command in sequence to append one or more AD structures, but the user
needs to ensure that the total advertisement payload is less than or equal to 31 bytes. If the total
advertisement payload is larger than 31 bytes, the command response is Err.

Table 5-8. List of AD Types

01 Flags
02 Incomplete list of 16-bit UUIDs
03 Complete list of 16-bit UUIDs
04 Incomplete list of 32-bit UUIDs
05 Complete list of 32-bit UUIDs
06 Incomplete list of 128-bit UUIDs
07 Complete list of 128-bit UUIDs
08 Shortened local name
09 Complete local name
0A TX power level
0D Class of device
OE Simple pairing hash
OF Simple pairing randomizer
10 TK value
11 Security OOB flag
12 Slave connection interval range
14 List of 16-bit service UUIDs
15 List of 128-bit service UUIDs
16 Service data
FF Manufacture specific data
Example: IA,Z // Reconnect to the second stored device
1Aa,01,05 // Adds an AD Structure with Flag AD type
IA,09,313233 // Appends an AD Structure with Name AD type.
ASCll data of “123" is used for AD data for local
name. Issuing another command in sequence
appends another AD Structure.
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: It is recommended to include the Flags AD data type in the advertisement data for connection-oriented applications.
This ensures the Android™ devices connect as expected. The PDS stores the parameters of NA and NS commands. The
parameters are effective immediately after restarting the advertising and scan without a reboot.

5.3.2.3 Set Extended Advertisement Data (IAE/NAE/ISE/NSE)
Format:

IAE, <hex8>, <Hex>

@ MICROCHIP

NAE, <hex8>, <Hex>
ISE, <hex8>, <Hex>
NSE, <hex8>, <Hex>

Commands, TAE, ISE, NAE and NSE, set the advertisement payload and scan response payload for
the secondary advertisement set, respectively.

The second letter in the commands indicates the type of information to be changed. The letter A
indicates changes to advertisement and letter s for scan response.

The extended advertisement is considered the second advertisement set in the A command. Thus,
using this set extended advertisement data command means it is possible to set the advertisement
data of the second advertisement mentioned in the 2 command.

The usage of IAE, ISE, NAE and NSE commands are the same as that of 12, 1S, NA and NS
commands, except the total bytes of the advertisement payload and scan response payload.

The total bytes of the advertisement payload and scan response payload can be a max of 245
bytes if using extended advertising configured by the TPE command. Otherwise, the total length
is limited to 31 bytes. If the total advertisement payload exceeds the limitation, the command
response is Err. The ISE, z command is designed to clear all scan response data. However, it is
disallowed in extended scannable advertisements without scan response content. If an extended
scannable advertisement is ongoing, the change will not take effect immediately, and restarting the
advertisement manually results in an Exr response. Therefore, it is strongly recommended to set
new scan response content immediately following the ISE, z command. This recommendation is
also applicable to the NSE, z command.

Example: IAE, Z // Clear all advertisement content
IAE, 01,05 // Adds an AD Structure with Flag AD type
IAE,09,313233 // Appends an AD Structure with Name AD type.

ASClII data of “123" are used for AD data for
the local name. Issuing another command in
sequence appends another AD Structure.

Response: AOK // Success
Err // Syntax error or invalid parameter

Note: The PDS stores the parameters of NAE and NSE commands. The parameters are effective immediately after restarting
the advertising and scan without a reboot. It is recommended to include the flag's AD data type in the advertisement

data for connection-oriented applications. This ensures the Android devices connect as expected. The IPE, IAE and NAE
commands are to configure the second advertisement set, which is also used by beacon. Any configuration by these
commands affects the beacon feature directly and vice versa.

5.3.2.4 Set Extended Advertisement Parameter (IPE)
Format: 1PE, <hex16>, <hex16>,<hex8>, <hex8>, <hex8>,<hex8>

Use the command IPE to configure the extended advertising parameters. The extended
advertisement is considered the second advertisement set in the 2 command.

The parameters supported by TPE commands are:
« 16-bit hex value of advertising event properties
+ 16-bit hex value of primary advertising interval
+ 8-bit value of primary channel map

+ 8-bit value of advertising TX power

+ 8-bit value of primary PHY

+ 8-bit value of secondary PHY

All parameters are stored in PDS and are updated in the controller immediately.

@ MICROCHIP

Advertising Event Properties - The parameter describes the type of advertising event that is
being configured and its basic properties. The following table provides details about the parameter
description.

Table 5-9. Advertising Event Properties Parameter Description

Bit Number Parameter Description

0 Connectable advertising

1 Scannable advertising

2 Directed advertising

3 High Duty Cycle Directed Connectable advertising (< 3.75 ms advertising interval)
4 Use legacy advertising PDUs

5 Omit advertiser's address from all PDUs (anonymous advertising)

6 Include TX power in the extended header of at least one advertising PDU

All other bit Reserved for future use

The advertising event type from bit O to bit 4 is limited to the cases as in the table below and

is prohibited in other combination cases. It is necessary to have extended scan response content
for the secondary advertisement set before a user sets the secondary advertisement set to the
Scannable Undirected advertising or Scannable Directed advertising. The bit 5 and bit 6 are effective
for extended advertising.

Table 5-10. Advertising Event Properties Type Description

Legacy Advertising

0x13 Connectable and scannable undirected advertising event type

0x1D High duty cycle directed connectable advertising event type

0x15 Low duty cycle directed connectable advertising event type

0x12 Scannable undirected advertising event type

0x10 Non-connectable and non-scannable undirected advertising event type

Extended Advertising

0x00 Non-Connectable and Non-Scannable Undirected advertising event type
0x04 Non-Connectable and Non-Scannable Directed advertising event type
0x01 Connectable Undirected advertising event type

0x05 Connectable Directed advertising event type

0x02 Scannable Undirected advertising event type

0x06 Scannable Directed advertising event type

Primary Advertising Interval - The parameter describes the primary advertising interval. The
following table provides details about the parameter description.

Table 5-11. Primary Advertising Interval Parameter Description

Parameter Description

N = OxXXXX Minimum advertising interval for undirected and low duty cycle directed advertising.
Range: 0x0020-0xFFFF
Time =N *0.625 ms
Time Range: 20-40,959 ms

Primary Advertising Channel Map - The parameter is a bit field that indicates the advertising
channel indices that are used when transmitting advertising packets. The following table provides
details about the parameter description.

@ MICROCHIP

30

5.3.2.5

Table 5-12. Primary Advertising Channel Map Parameter Description

0 Use channel 37
1 Use channel 38
2 Use channel 39
All other bits Reserved for future use

Advertising TX Power - The parameter indicates the maximum power level at which the advertising
packets are to be transmitted on the advertising physical channels. The input parameter is an
eight-bit hexadecimal value whose unit is dBm that is assigned to the RF TX output power. The valid
output power is from -25(0xE7) dBm to 15(0x0F) dBm. There can be a variation in output power
based on antenna power compensation by module and the actual value cannot be consistent with
the assigned value.

Primary Advertising PHY - The parameter indicates the PHY on which the advertising packets are
transmitted on the primary advertising physical channel. If using the legacy advertising PDUs, the
primary advertising PHY indicates the LE 1M PHY. The following table provides details about the
parameter description.

Table 5-13. Primary Advertising PHY

0x01 Primary advertisement PHY is LE 1M
0x03 Primary advertisement PHY is LE coded
All other values Reserved for future use

Secondary Advertising PHY: The parameter indicates the PHY on which the advertising packets are
to be transmitted on the secondary advertising physical channel. The following table provides details
about the parameter description.

Table 5-14. Secondary Advertising PHY

0x01 Secondary advertisement PHY is LE 1M

0x02 Secondary advertisement PHY is LE 2M

0x03 Secondary advertisement PHY is LE Coded

All other values Reserved for future use

Example: 1PE,0001,0200,07,0F, 01,02 // Connectable Undirected extended advertising

// Primary interval: 320 ms

// Advertising channel: Ch37, Ch38 and Ch39

// TX power: 15 dBm

// Primary advertisement PHY is LE 1M

// Secondary advertisement PHY is LE 2M
Response: AOK // Success

Err // Syntax error or invalid parameter

Get Local Advertisement Address(IRA[,<hex8>]
Format: IRA [, <hex8>]

Command IRA read advertising address. The IRA command accepts an optional parameter that
indicates the handle. The first byte in response is address type. Address type 0 indicates public type
addressing and 1 indicates random type addressing.

@ MICROCHIP

31

5.3.2.6

5.3.2.7

5.3.2.8

Example: IRA // Read ADV address in handle 1 (default handle)

IRA, 00 // Read ADV address in handle 1
IRA, 01 // Read ADV address in handle 2
Response: 00,112233445566 // Advertising with public address type

01,766854672450 // Advertising with random address type

Err /1 Given parameter or handle is invalid

Set Fast Advertisement Parameter (STA, <hex16>,<hex16>,<hex16>)
Format: ST2, <hex16>, <hex16>,<hexl6>

This command sets the advertising interval and time-out parameters to connect advertisements
defined by the a, 1A and NA commands. The three input parameters are fast advertising interval,
fast advertising time-out and slow advertising interval, respectively. All input parameters are in hex
format. The unit of the fast and the slow advertising intervals is 0.625 ms, and the fast advertising
time-out unit is 10 seconds. The range of fast and slow advertising intervals is from 0x0020 to
OxFFFF, and the range of the total advertising time-out is from 0x0000 to OxFFFF. If the command

is not set, the default value of the fast advertising interval is 0x0200, the default value of the fast
advertising time-out is 0x0003 and the default value of the slow advertising interval is 0x0601. The
function can be enabled by using the A command without any parameters or enabling the power-on
advertising function.

The corresponding Get command, GT2, returns in the same order as follows: fast advertising
interval, fast advertising time-out, slow advertising interval.

Default: 0200, 0003, 0601
Example: STA,0020,0003,0601 // Sets the connectable fast advertising interval to be 20 ms,
time-out to be 30 seconds and the slow advertising interval
to be 960.625 ms
Response: AOK // Success
Err // Syntax error or invalid parameter

Note: The parameters of the STA command are stored in PDS. The command is effective after
restarting advertising. If the fast advertising timeout interval is larger than or equal to the RPA
timeout interval configured by the ssEP command, RNBD will send the Err status response to the
host.

Stop Advertising (Y)

Format: v

Command Y stops advertisement started by command A. Command Y does not expect any
parameter.

Example: Y // Stop advertisement
Response: AOK /1 Success

Set Deep Sleep Advertising (SDO,<0,1>,<hex16>)
Format: sDo, <0, 1>, <hexl16>
The Deep Sleep Advertising (DSADV) in the RNBD350 module is configurable using the SDO

command. The SDO command accepts two input parameters. The first parameter is a single digit
value that determines the enabling/disabling of the deep sleep advertising feature, and it expects

two bytes length as the second input parameter. The value ‘1’ enables the deep sleep advertisement.

When the deep sleep advertisement is enabled, then the UART is not operational to save the power
consumption. If the first parameter value is ‘'0’, the RNBD350 module runs without DSADV and UART
is operational all time.

@ MICROCHIP

32

5.3.2.9

It is necessary to wake up UART by pulling UART_RX_IND (UART RX Indication, PB4) pin low from the
host MCU before the host MCU transmits data to the RNBD350 module.

The second input parameter indicates the deep sleep advertisement interval with a 0.625 ms time
unit.

With deep sleep advertisement enabled, the RNBD350 module wakes up and advertises once for
every set interval time. After the single advertisement, the RNBD350 module enters into deep sleep
again until it gets connected with a central.

If the host MCU wants to send a command during the time when the RNBD350 module is operating
in deep sleep advertising, then the host MCU must wake up the RNBD350 module. Which means,
the UART_RX_IND (UART RX Indication, PB4) must be active prior to sending any UART data.

Note: The wake-up time must be more than 25 ms.

If the DSADV interval setting is more than 400 ms, the RNBD350 module rejects DSADV. In this
scenario, there is no power consumption advantage than normal Sleep mode, and the RNBD350
module rejects the DSADV. MCU can choose the normal Sleep mode command instead of the Low
Power Control (s0) command. For more details, refer to 5.3.1.6. Low Power Control (SO,<0,1>).

Figure 5-3. Wake Up RNBD350 from DSADV Timing Diagram

UART_RX Start UART_RX End

UART_RX_IND

«pi T
UART_RXD ¥ ~ \ \ ~ I

Note: T,4: The time prior to UART data. This time must be more than 25 ms.

Default: 0, 0000 // DSADV mode is disabled
Example: SDo, 1,0640 // Set DSADV to enabled for interval 1s
Response: AOK /1 Success

Err // Syntax error or invalid parameter

Get Deep Sleep Advertising Parameters (GDO)
Format: GDO

The GDO command responds back with the parameter values of deep sleep advertisement.

Example: GDO // Query setting parameters of DSADV
Response: 1,0640 // DSADV is enabled with interval 1s

5.3.2.10 Set Beacon Data (IB/NB)

Format:
IB,<hex8>,<Hex>

NB, <hex8>, <Hex>

@ MICROCHIP

33

These commands are used for the beacon advertisement. For more details, refer to 5.3.2.3. Set
Extended Advertisement Data (IAE/NAE/ISE/NSE).

Using 18/NB will configure the second advertisement set to beacon with legacy advertising. The
length of total data is limited to 31 bytes. It can have some advanced configurations by the IPE
command if needed.

Note: The parameters of NB commands are stored in PDS. The parameters are effective
immediately after restarting the advertising without a reboot.

5.3.2.11 Set Beacon Advertisement Parameter (STB,<hex16>)
Format: STB, <hex16>

This command sets the advertising interval for beacons as defined by the 1B and NB commands.
The beacon advertising interval parameter unit is 0.625 ms. The corresponding Get command, GTB,
returns the beacon advertising interval.

Default: N/A
Example: STB, 00A0 // Sets the beacon advertising interval to be 100 ms
Response: AOK // Success

Err // Syntax error or invalid parameter

Note: The parameters of STB command are stored in PDS. The parameters are effective immediately after restarting the
advertising without a reboot.

5.3.2.12 Get Beacon Advertisement Parameter (GTB,<hex16>)
Format: GTB, <hex16>

This command returns the beacon advertisement interval.

Default: N/A
Example: GTB // Gets the beacon advertisement interval
Response: 00A0 // Success, interval = 100 ms

5.3.2.13 Set Advertisement Enable Configuration (SC,<0-2>)
Format: sc, <0-2>

This command configures the connectable advertisement and non-connectable/beacon
advertisement settings. It expects one single-digit input parameter as described in the table
below. The beacon feature enables non-connectable advertisement. The RNBD350 has the ability
to advertise connectable advertisement and non-connectable beacon advertisement in a tandem
switching manner when the sc, 2 is used. Like IB/NB commands, this command will configure
the second advertisement set to beacon with legacy advertising. It can have some advanced
configurations by the TPE command.

To configure the beacon payload, refer to 5.3.2.10. Set Beacon Data (IB/NB).

Table 5-15. Setting Connectable Advertisement Non-Connectable/Beacon Advertisement

Setting Connectable Advertisement Non-Connectable/Beacon
Advertisement

0 Enabled Disabled

1 Disabled Enabled

2 Enabled Enabled

Default: 0

Example: sc,2 // Enable both the non-connectable beacon and

connectable advertisement

34

@ MICROCHIP

Response: AOK // Success
Err // Syntax error or invalid parameter
Note: The parameters of the sc command are stored in PDS. The parameters are effective immediately.

5.3.2.14 Get Advertisement Enable Configuration (GC)
Format: GC

This command returns the configuration of connectable advertisement and non-connectable/
beacon advertisement settings.

Default: N/A
Example: GC // Sets the beacon advertisement interval to be 100 ms
Response: 2 // Enable both non-connectable beacon and
connectable advertisement
5.3.3 Scan

5.3.3.1 Start Bluetooth Low Energy Scanning (F[,<hex16>,<hex16>])
Format: F [, <hex16>,<hex16>]

Use command F to automatically switch the device into central GAP role and start Bluetooth Low
Energy scanning.

If no parameter is provided, command F starts the process of scanning with a default scan interval
of 375 ms and a scan window of 250 ms. The command F receives two optional parameters that
determine the scan interval and scan window. The input parameters are 16-bit hex format. Each
parameter (scan interval and scan window) has a unit of 0.625 ms. The scan interval and the scan
window values can range from 2.5 ms to 40.959s.

Note: The scan interval must be larger than or equal to the scan window. Use the x command to
stop an active scan.

Default 375 ms for scan interval, 250 ms for scan window

Example: F,01E0,0190 // Start inquiry with 300 ms scan
interval and 250 ms scan window
Response: Scanning // Start scanning
%<Address>, <Addr Type>, <Name>, <UUIDs>,<RSSI>>,<Tx PHY>,<Rx // Connectable
PHY>%
%<Address>, <Addr Type>,<RSSI>,<Tx PHY>, <Rx // Non-connectable

PHY>,Brcst:<Broadcast Payload>%

5.3.3.2 Start Extended Bluetooth Low Energy Scanning (FE,<hex16>...)
Format: FE, <hex16>,<hex16>,<hex8>,<hex8>[,<Device Name Filter Data>,<Service
Filter Data>,<Manufacturer Specific Filter Data>]

Command FE performs extended Bluetooth Low Energy scanning to be used on the advertising
physical channels. The command receives seven input parameters.

The parameters supported by FE commands are:

+ 16-bit hex value of scan interval

* 16- bit hex value of scan window

+ 8-bit value of scanning PHYS

+ 8-bit value of filter option

Note: Based on the filter option selection, the user must pass an additional parameter value.

These parameters are described in the following list:

35

@ MICROCHIP

5.3.3.3

5.3.4
5.3.4.1

+ Scan interval <hex16> - Time interval from when the controller started its last scan until it begins
the subsequent scan on the primary advertising physical channel. The unit is 0.625 ms, and the
range is from 2.5 ms to 40.959s.

+ Scan window <hex16> - Duration of the scan on the primary advertising physical channel. The
unit is 0.625 ms, and the range is from 2.5 ms to 40.959s.

Table 5-16. Scanning PHYS <hex8>

0 Scan advertisements on the LE 1M PHY
1 Scan advertisements on the LE Coded PHY

Table 5-17. Filter Option <hex8>

0 Enable device name filter
1 Enable service data filter
2 Enable manufacturer specific data filter

Device name filter data - A string representing the device name content, where the first byte
indicates the length of the device name. The maximum length allowed is 16 bytes.

Service filter data - The service filter data consists of four elements. The first element is
the UUID length, the second element is the UUID data (16 bytes), the third element is

the service data length and the fourth element is the service data (16 bytes). For example:
FE,01e0,0190,01,02,02dafe02f£f01.

Manufacture-specific filter data - The Manufacture filter data consists of three elements. The first
element is the company ID that is two bytes, the second element is the manufacture data length, the
third element is the manufacture data (16 bytes). For example: FE, 010, 0190, 01, 04, 4C0000.

Example: FE,01e0,0190,01,01,0C524e424 //Startthe inquiry with a 300 ms scan interval and a
43435785£38323431 250 ms scan window, and use the 12-byte device name
RNBD350_xxxx to filter the scan on the 1M PHY.
Response: Scanning // Start scanning.
Connectable /1 %<Address>,<Addr_Type><Name>,<UUIDs>,<RSSI>,<Tx
PHY>,<Rx PHY>%
Non-connectable %<Address>,<Addr_Type>,<RSSI>,<Tx PHY><Rx

PHY>,Brcst:<Broadcast Payload>%

Note: The command expects a carriage return at the end.

Stop Bluetooth Low Energy Scanning (X)
Format: x

Command X stops scan process started by command F or FE. Command X does not expect any
parameter.

Example: X // Stop scan
Response: AOK // Success
Connection

Set Central Initial Connection Parameter (ST,<hex16>...)
Format: ST, <hex16>,<hex16>, <hex16>,<hex16>

This command sets the initial connection parameters of the central device for future connections.
This command expects four input parameters, and all are 16-bit values in hex format. For any

@ MICROCHIP

36

5.3.4.2

modifications in current connection parameters, refer to 5.3.4.2. Request Connection Parameter
Update (T,<hex16>...).

The corresponding get command, GT, returns the desirable connection parameters set by command
ST when the connection is not established. When the connection is established, the actual
connection parameters display in response to command GT.

Connection interval, latency and timeout are often associated with how frequently a peripheral
device must communicate with the central device and are , therefore, closely related to power
consumption. The following table provides details about the parameters, range and description.

The connection parameters need to adhere to the following rules.
Latency <= 30

Maximum Interval X 1.25 X (1 + Latency) < 4 seconds, (4 seconds = 400 ms)
Maximum Interval X 1.25ms X (1 + Latency) X 5 < Time — out X 10 ms

Table 5-18. Connection Parameters

Minimum interval 0x0006-0x0C80 + The minimum time interval of communication between two connected
devices

* Unit-1.25ms
Maximum interval 0x0006-0x0C80 « The maximum time interval of communication between two connected
devices

* Unit - 1.25 ms; must be larger or equal to minimum interval

Latency 0x0000-0x01F3 The maximum number of consecutive connection events. The peripheral

Must be less device is not required to communicate with the central device.

than ((Timeout*10/Inter-

val*1.25)-1)
Timeout 0x000A-0x0C80 + The maximum time allowed between raw communications before the

link is considered lost
* Unit-10ms
Default: 0010, 0010, 0000, 0048
Example: ST,0020,0064,0002,0064 // Set the interval between 40-125 ms, latency to 2 events
and timeout to 1s
Response: AOK // Success
Err /1 Syntax error or invalid parameter

Note: The PDS stores these parameters. The parameters are effective immediately. Apple® iOS® devices have some special
requirements for these parameters. The connection parameter update may be rejected if it does not comply with the rules.
For more information, refer to the Accessory Design Guidelines on the Apple developer website.

Request Connection Parameter Update (T,<hex16>...)
Format: T, <hex16>, <hex16>,<hex16>,<hex16>[,<hex16>]
Use command T to change the following connection parameters:
+ Interval

* Latency

+ Supervision timeout for current connection

@ MICROCHIP

37

5.3.4.3

5.3.4.4

The connection handle received for each connection is appended as the fifth parameter to indicate
the target device for multiple links. The parameters of command T are lost after reboot or power
cycle. All parameters are 16-bit values in hex format. Command T is only effective if an active
connection exists when the command is issued.

For more details about the ST command, definitions, ranges and relationships of the connection
interval, latency and timeout, refer to 5.3.4.1. Set Central Initial Connection Parameter
(ST,<hex16>...) . For more details on connection parameters, see Table 5-18.

When command T with valid parameters is issued by the peripheral device, the minimum interval of
timeout is required between two connection parameter update requests. The decision on whether
to accept the connection parameter update request is up to the central device. When the RNBD350
module acts as a central device, it accepts all valid connection parameter update requests.

The connection parameters need to adhere to the following rules:

+ Latency <=30

+ Maximum Interval *¥1.25 ms*(1+ Latency) <= 4 seconds. (4 seconds = 4000 ms)

+ Maximum Interval *1.25 ms*(1+ Latency) * 5 < Time-out * 10 ms

Default Interval: 0020; Latency: 0000; Timeout: 0200 ms
Example: T,0024,0024,0001,00C8 // Request Connection Parameter to use
interval 45 ms, latency 1, timeout 2000 ms
T,0024,0024,0001,00C8,0071 // Request Connection Parameter to use
interval 45 ms, latency 1, timeout 2000 ms
and optional assigned connection handle
0071
Response: AOK /1 Success
Err // Syntax error or invalid parameter
%ERR_CONNPARM, 0071% // Status string , connection handle 0071

Note: Apple®iOS°® devices have some special requirements for these parameters. The connection parameter update may
be rejected if it does not comply with the rules. For more information, refer to the Accessory Design Guidelines on the Apple
developer website.

Connect Last Bonded Device (C)
Format: C

This command makes the RNBD350 module a central device and tries to connect it to the last
bonded device. When this command is used to reconnect to a bonded device, the RNBD350 module
automatically secures the link when the connection is established.

Default None
Example: C // Connect to the last bonded device, if the device uses a
public address
Response: Trying // Start connecting
$CONNECT% // Status string
%$SECURED% // Status string
ERR // No bonded device

Connect Device by Address(C,<0,1>,<address>)
Format: C, <0, 1>,<address>

The ¢ command initiates a connection to a remote Bluetooth Low Energy device. The command
expects two input parameters.

The first parameter indicates the address type. The value ‘0’ refers to a public address and ‘1 refers
to a random private address. The second parameter expects the address of the remote Bluetooth
Low Energy device in hex format where the connection needs to be made. When this command is

@ MICROCHIP

38

5.3.4.5

5.3.4.6

used to connect to an already bonded device, the link is not automatically secured. Instead, the user
must use command B to secure the link after the connection is established.

Example: c,0,00A053112233 // Connect to the Bluetooth® Low Energy address
00A053112233
Response: Trying // Start connecting
$CONNECT$S // Status string
ERR // Syntax error or invalid parameter
$ERR_CONN, <ConnHandle>% /1 Status string

Connect Specific Bonded Device (C<1-8>)
Format: c<1-8>

The RNBD350 module can store the MAC addresses for up to eight bonded devices. The ¢ command
provides an easy way to reconnect to any stored device without typing the MAC address of the
stored device if the device uses a public address. When this command is used to reconnect to

a bonded device, the RNBD350 module automatically secures the link when the connection is
established. To display the list of stored devices, use command LB.

Example: c2 // Reconnect to the second stored device
Response: Trying // Start connecting
$CONNECT% // Status string
Err // Syntax error or invalid parameter
$ERR_CONN, <ConnHandle>% // Status string

Connect Device with Extended Parameter (CE,<0,1>,<address>...)

Format: CE, <0, 1>, <address>, <hex8>, <hex16>,<hex16>,
<hex16>,<hex16>,<hex16>,<hex16>

The cE command is allowed to initiate a connection to a remote device with extended parameters.
The following table provides details about the parameters.

The connection parameters must adhere to the following rules.

* Latency <=30
» Maximum Connection Interval X 1.25 X (1 + Latency) < 4 seconds, (4 seconds = 400 ms)

* Maximum Interval X 1.25 ms X (1 + Latency) X 5 < Supervision Time — out X 10 ms

Table 5-19. Parameter List

Address Type Oor1 The address type - ‘0’ for public address and ‘1’ for private random address
Address — The 6-byte Bluetooth® device address
PHY options — The bitmap of supported PHYs described in Table 5-20. This setting is to set

preferred PHYs to create a connection. The following 6 parameters are a set for
each PHY. For example, there are 12 parameters followed by this setting if it enables
1M and 2M PHYs. When there are multiple PHYs supported, the order of following a
6-parameter set is for 1M, 2M, then, codec PHY.

Scan interval 0x0004 or OXFFFF The 16-bit hex value for the scan interval (Unit - 0.625 ms)
Scan window 0x0004 or OXFFFF The 16-bit hex value for the scan window (Unit - 0.625 ms)

The scan window must be less than or equal to the scan interval.
Minimum 0x0006 or 0x0C80 The 16-bit hex value for the minimum connection interval (Unit - 1.25 ms)
connection
interval

@ MICROCHIP

39

5.3.4.7

5.3.4.8

........... continued

Maximum 0x0006 or 0x0C80 The 16-bit hex value for the maximum connection interval (Unit - 1.25 ms)

connection

interval

Latency 0x0000 or 0x001E The 16-bit hex value for the maximum number of consecutive connection events
The peripheral device is not required to communicate with the central device.

Supervision 0x000A-0x0C80 The 16-bit hex value for the maximum time allowed between raw communications

timeout before the link is considered lost (Unit - 10 ms)

Table 5-20. Bitmap of PHYs

01 1M PHY
02 2M PHY
04 Coded PHY
Example: CE,0,3481F4A8436A,01,003C,00 //Set 1M PHY and related settings to connect to the public
1E,0010,0010,0000,0048 address 3481F4A8436A
Response: Trying // Start connecting
$CONNECT$S // Status string
Err /1 Syntax error or invalid parameter
$ERR_CONN, <ConnHandle>$% // Status string

Note: The PDS does not store the parameters of this command and does not affect other commands initiating a
connection.

Disconnect Link (K,1[,<hex16>])
Format:x, 1

Use command K to disconnect the active Bluetooth Low Energy link. The user can use it in central or
peripheral devices.

The Disconnect Link command also accepts an optional parameter to effectively handle multi-link
connections. In the multi-link scenario, it can assign a two-byte connection handle, following K, 1, to
disconnect a particular link.

If no connection handle is assigned in the command, it disconnects the last connection.

Example: K,1 /1 Kill the active Bluetooth® Low Energy connection
K,1,0071 // Disconnect the link with connection handle 0x0071
Response: AOK /1 Success
%$DISCONNECT, <ConnHandle>% // Status string
Err // Syntax error or not connected

Set PHY Preference (CSPHY,<hex16>...)
Format: CSPHY, <hex16>,<hex8>,<hex8>, <hex8>

Use this command to set the PHY preferences for the specified connection. The CSPHY command
expects four input parameters. The first parameter is a 16-bit hex value that indicates which
connection handle corresponds to a specific Bluetooth Low Energy connection. The second
parameter is an 8-bit bitmap defined in Table 5-21 that sets the preferred PHY’s transmitter. The
third parameter is an 8-bit bitmap to set the preferred PHY's receiver. For the value definition, refer
to Table 5-21. The last is the PHY option, which is used when the coded PHY is selected and defined
in Table 5-22.

@ MICROCHIP

40

Table 5-21. Bitmap of PHY’s

00 No preferred
01 1M PHY

02 2M PHY

04 Coded PHY

Table 5-22. Bitmap of PHY’s Option

00 No preferred
01 S2 coded PHY
02 S8 coded PHY
Example: CSPHY,0071,03,03,00 // Set the preferred PHY of TX and RX to 1M/2M PHY in the
Bluetooth® Low Energy link for connection handle 0x0071
Response: AOK // Success
Err // Syntax error or invalid parameter

$PHY UPDATED, <ConnHandle>,<T //PHY update success status report
x PHY>,<Rx PHY>%

%$ERR_PHYUPDATE, <ConnHandle>% // PHY update fail status report

Notes:

+ Use this command only when the Bluetooth Low Energy connection(s) exists. For more details on the TX PHY and RX PHY
values of the PHY update status report, see Table 5-23.

+ The PHY preference set over the connection must not be maintained. The command is associated with the connection
handle, which is unique for every command. Hence, the PHY preference needs to be set for every new connection.

5.3.4.9 Get PHY Preference (CRPHY[,<hex16>])
Format: CRPHY [, <hex16>]
Use this command to read the current transmitter PHY and receiver PHY on the specified
connection. The 16-bit connection handle of the Bluetooth Low Energy link is assigned in the

parameter of the command. It returns the PHY type of transmitter and receiver as a value (see
the following table).

Table 5-23. List of PHY Type

P Type (5

01 1M PHY
02 2M PHY
03 Coded PHY
Example: CRPHY, 0071 // Read the PHY of TX and RX used for the Bluetooth® Low
Energy link for the connection handle 0x0071
Response: CPHY,0071,02,02 // Current used PHY is 2M in both of RX and RX
Err // Syntax error or invalid parameter

Note: Use this command only when the Bluetooth Low Energy connection(s) exists.

5.3.4.10 Cancel Create Connection (2)
Format: z

Command z cancels the connection attempt started by command ¢ before a connection is
established. Command 7z does not expect any parameter.

@ MICROCHIP

Example: Z /1 Cancel attempt to establish a connection
Response: AOK // Success

Err // Already connected

5.3.5 Security

5.3.5.1 Set Pairing Mode (SA,<0-5>,[<0,1>])
Format: sa,<0-5>, [<0,1>]

The Set Authentication (SA) command configures the authentication method between the RNBD350
module and peer device when securing the Bluetooth Low Energy link. The respective authentication
method must be selected based on the I/0 capabilities supported in both sides. The following table
provides details about the options for the command parameter.

When a remote device pairs with the RNBD350 module, a link key is stored for future authentication.
The device automatically stores authentication information for up to eight peer devices in PDS.

If the bonded device table is filled with eight entries and a ninth entry to be added, the ninth entry
replaces the first entry on the table. If any particular entry in the bonded device table is deleted, a
new entry to the table takes the place of the deleted entry.

Table 5-24. Set I/0 Capability

0 No Input No Output with Bonding The RNBD350 module as a responder requests pairing to bond with
the remote device automatically.

1 Display Yes/No The RNBD350 module as a responder requests pairing to bond
with the remote device automatically. In general, it needs users to
do numeric comparison and confirm. The actual pairing method
happens via the 1/0 capabilities in both sides. If the RNBD350
outputs “Numeric comparison confirm, key in Y/y to accept pairing
or any other key to cancel pairing”, the user is required to input Y/y to
accept pairing or any other key to cancel pairing.

2 No Input No Output The RNBD350 module as a responder does not request pairing to
bond with the remote device automatically. The remote peer device
as an initiator may raise pairing and bonds with the RNBD350
module.

3 Keyboard Only The RNBD350 module as a responder requests pairing to bond with
the remote device automatically. Usually, the passkey is displayed in
the remote side and needs users to input the passkey with a carriage
return to the RNBD350 module. The actual pairing method happens
via the I/0 capabilities in both sides.

4 Display Only The RNBD350 module as responder requests pairing to bond with
the remote device automatically. In general, the RNBD350 module
displays the passkey and needs users to input the passkey in the
remote peer device side. The actual pairing method happens via the
I/O capabilities in both sides.

5 Keyboard Display The RNBD350 module as responder requests pairing to bond with
the remote device automatically. In general, it needs users to do
a numeric comparison and confirm. The actual pairing method
happens via the 1/0 capabilities in both sides. If the RNBD350
outputs “Numeric comparison confirm, key in Y/y to accept pairing
or any other key to cancel pairing”, the user is required to input Y/y to
accept pairing or any other key to cancel pairing.

The following table provides details about the 1/0 capability mapping. For more details about 1/0
capability mapping, refer to the Bluetooth Core Specification. Before selecting the 1/0 capability in
this command, the user needs to consider the input and output capability of the product with the
RNBD350 module. The pairing method happens via the I/0 capabilities of both sides. The second

42

@ MICROCHIP

5.3.5.2

5.3.5.3

parameter is the secure connection only option; the value ‘0’ is to disable the secure connection
only, and the value ‘1" is to enable secure connection only.

Table 5-25. /0 Capability Mapping

Local Input Capacity Local Output Capacity

Local Input Capacity No Input No Input No Output Display Only

Yes/No No Input No Output(Display Yes/No

Keyboard Keyboard Only Keyboard Display
Note:
1. None of the pairing algorithms can use Yes/No input and no output; therefore, use No Input No Output as the resulting

1/O capability.
Default: 2
Example: SA, 1 // Set device to display pin
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The PDS stores the parameter and is effective immediately without a reboot.

Set Fixed Pin Code (SP,<4/6 digit pin>)
Format: spP,<4/6 digit pin>

This command sets the fixed security pin code. The fixed pin code has two functionalities:

1. If the fixed pin is a six-digit code, use it to display when I/0 capability (see Table 5-24) is set
to display only by command. For that, first, set the fixed pin as a six-digit code using the sp
command, then, set the pairing mode to Display Only (value 4). The six-digit pin is used for the
Simple Secure Pairing (SSP) authentication method in Bluetooth Low Energy if a fixed passkey is
desired. In this way, the RNBD350 module is not required to display the passkey if the remote
peer already knows the passkey. The user must understand the security implication by using the
fixed passkey.

2. Use the four-digit pin code option to authenticate remote command connection.

Default: 000000
Example: SP,123456 // Set pin code to 123456
Response: AOK // Success

Err // Syntax error or invalid parameter

Note: The PDS stores this parameter and is effective immediately without a reboot.

Start Bonding Process (B[,<hex16>])
Format: B

Use command B to secure the connection and bond two connected devices. Command B is only
effective if two devices are already connected. The bonding process can be initiated from either

the central or the peripheral device. There is an optional parameter for the connection handle to
perform the bonding process in a specific link.

When bonded, security materials are saved in both ends of the connection. Therefore, reconnection
between bonded devices does not require authentication, and the user can do the reconnection in a
very short time.

If the bonded connection is lost due to any reason, reconnection does not automatically provide a
secured link when the device is connected by a remote side. To secure the connection, the user must
issue another B command.

@ MICROCHIP

43

Default Not bonded

Example: B // Bond with connected peer device
Response: AOK // Success

%$SECURED% // Status string

%$BONDED% // Status string

Err // Not connected yet

$ERR_SEC% // Failed in security

5.3.5.4 Add One Device Into Accept List (JA,<0,1>,<BDA>)

5.3.5.5

5.3.5.6

Format: Ja, <0, 1>, <BDA>

Use command Ja to add a MAC address to the accept list. When one device is added to the accept
list, the accept list feature is enabled. With the accept list feature enabled, when performing a scan,
any device not included in the accept list does not appear in the scan results. As a peripheral, any
device not listed in the accept list cannot be connected with a local device. The RNBD350 module
supports up to eight addresses in the accept list. If the accept list is full, any attempt to add more
addresses returns an error.

Command Ja expects two input parameters. The first parameter is ‘0’ or ‘1’, indicating that the
following address is public or private. The second parameter is a six-byte address in hex format.

When the input address is a random address, it must be a static random address. If there is a
change in the random address, this device is no longer considered to be on the accept list.

Default None
Example: JA,0,112233445566 // Add public address 0x112233445566 to
// accept list
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Add Bonded List Into Accept List (JB)
Format: JB

Use command JB to add all currently bonded devices to the accept list. Command JB does not
expect any parameter.

The random address in the accept list can be resolved with command JB for connection purpose. If
the peer device changes its resolvable random address, the RNBD350 module is still able to detect
that the different random addresses are from the same physical device and, therefore, allows a
connection from such a peer device. This feature is particularly useful if the peer device is an iOS or
Android device that uses a resolvable random address.

Default None
Example: JB /1 Add all bonded devices to accept list
Response: AOK /1 Success

Clear Accept List (JC)
Format: JcC

Use command Jc to clear the accept list. After clearing the accept list, the accept list feature is
disabled. Command Jc does not expect any parameter.

The only way to disable the accept list is to clear it.

Default None
Example: Jc // Clear accept list
Response: AOK /1 Success

@ MICROCHIP

44

5.3.5.7

5.3.5.8

5.3.5.9

Display Accept List (JD)
Format: JD
Use command JD to display all MAC addresses that are currently in the accept list. Each Bluetooth

address displays in the accept list, followed by ‘0" or ‘1" to indicate the address type, separated by a
comma.

Default None
Example: JD //Display all MAC addresses in the accept list
Response: <Address>,<Address_Type> —

END

Unbond Device (U,<1-8,Z>)
Format: U,<1-8, z>

Command U removes existing bonding. This command works in both central or peripheral GAP
roles.

Command U expects one input parameter. The parameter indicates the index of the bonding that
needs to be removed. Use command 1B to determine the index of the bonding. If the input
parameter is the letter z, then all bonding information is cleared. If an empty index is available,
the new pairing and bonding information is added at the first available empty index.

Example: U, 1 // Remove the bond with index 1
Response: AOK // Success
Err // Syntax error or invalid parameter

List All Bonded Devices (LB)
Format: LB

Command LB lists all bonded devices in the following format:
<index>,<address>,<address type>

where <index> is a single-digit index in the range of 1-8, representing the index of the bonded device
in the bonding table. Use this index in command c<1-8> to reconnect and in command U, <1-8> to
remove bonding.

The <address> is a six-byte number representing the address of the bonded device; <address type>
is a single-digit number, taking either ‘0’ or ‘1’. Value ‘0’ for <address type> means that the address in
the bonding information is a public address. In such a case, use command C or C<1-8> to reconnect
to the bonded device. Value ‘1’ for <address type> means a random address; therefore, reconnection
is not possible using the bonded information because the peer device may use a different random
address when the RNBD350 module tries to reconnect.

Example: LB // List all bonded devices

5.3.5.10 Enable Local Privacy (&SEP...)

Format: s«SEP, <0, 1>, <hex8>, <hex16>[, <hex128>]
Use the «SEP command to enable/disable the local privacy configuration in the RNBD350 module.

When enabling local privacy, the device is in the Device Privacy mode, and it is only concerned about
its own privacy. It must accept advertising packets from peer devices that contain their identity
addresses as well as their private address, even if the peer device distributed its Identity Resolving
Key (IRK). For more details, refer to the Privacy Feature in the Bluetooth Core Specification.

@ MICROCHIP

45

The local privacy feature support in the RNBD350 module is dependent on the first parameter. The
value ‘1" enables the local privacy, and value ‘0’ disables the local privacy. If local privacy is disabled,
the user can ignore the following parameters.

Use the second parameter to set the privacy address type; only a random resolvable address (value
2) and a random non-resolvable address (value 3) are allowed.

Use the third parameter to set the timeout interval before the device changes the random privacy
device address. The time unit is one second and the range is from 1s to 1800s. This value must not
be too small; the recommended timeout is larger than 900s.

The fourth parameter is optional for setting the local IRK of the local device. Use this parameter if
IRK is a known IRK; otherwise, the system uses a default IRK.

Example: &SEP,1,02,0384 // Enable local privacy with a random resolvable address
type; the timeout interval to change the random resolvable
address is 900s (unit - 1s).

Response: AOK /1 Success

Err // Syntax error or parameter error
5.3.5.11 Get Local Privacy (&SGP)
Format: sSGP

Use command &SGP to get the local privacy setting. The user can retrieve all the parameter settings

in &SEP.
Example: &SGP // Get local privacy setting
Response: 1,02,0384,000000000000000000 //Address type and the timeout interval to change random
000000ABCD1234 resolvable address is 900 seconds and IRK is hex128
Err /1 Syntax error or not connected

5.3.5.12 Set Remote Command Mode Password (SPW,<text>)
Format: SPW [, <text>]

The spw command is used to set the password for Remote Command mode to replace PIN code
functionality to strengthen the security. This password is default null; however, it still uses the
original PIN code to enter remote command mode as before. After this password is set, it uses the
password. The password is presented in text, the minimum length is 6 bytes and maximum length is
32 bytes. If no text is carried with the command, the password resets to null. For more details, refer
to 5.2.11. Remote Command Mode Control (!,<0,1>[,<hex16>]).

Default: null
Example: SPW, RNBD350 /1 Set password asRNBD350 SPW
// Reset password to null
Response: AOK // Password is stored
Err // Syntax error or password length not allowed

Note: The parameter of Spiw command is stored in PDS.

5.3.5.13 Get Remote Command Mode Password (GPW)
Format: Gpw

Command GPw is used to read the password for remote command mode switch authentication.

Example: GPW // Read password
Response: RNBD350 // Password is stored
null // No password setting

46

@ MICROCHIP

5.4 Bluetooth Low Energy GATT/Profile Commands

5.4.1 Generic Access Service Setting
5.4.1.1 Set Appearance (SDA,<hex16>)
Format: spA, <hex16>

This command sets the appearance of the RNBD350 module in the GAP service. It expects one 16-bit
hex input parameter. Bluetooth SIG defines the appearance code for different devices. For more
details, refer to the Appearance Values Bluetooth® Document (2021-11-24).

Default: 0000
Example: SDA, 0340 // Set appearance to Generic Heart Rate Sensor
Response: AOK /1 Success

Err // Syntax error or invalid parameter

Note: The PDS stores the parameter and is effective immediately without a reboot.

5.4.2 Device Information Service Setting

5.4.2.1 Set Firmware Version (SDF,<text>)
Format: SDF, <text>

This command sets the value of the firmware revision characteristics in the device information
service. This command is only effective if the device information service is enabled by command ss.

Use the device information service to identify the device. All its characteristics rarely change.
Therefore, values of characteristics in the device information service are set and saved into PDS.
All of the values of the characteristics in the device information service have a maximum size of 20

bytes.

For more information on the device information service, refer to the Bluetooth Core Specification.
Default: Current RNBD350 firmware version

Example: SDF, 0.9 —

Response: AOK // Success

Err // Device information service not enabled
/1 Syntax error, invalid parameter
Notes:

+ The PDS stores the parameter and is effective immediately without reboot.

+ The firmware version in DIS is configurable by set Firmware Version (SDF) command. Although it is same as result
of v.command by default, they could be different after DFU, because the SFD/GDF command write/ reads the version
information to/from PDS but the v command prints the version information directly from the program code segment.

5.4.2.2 Set Hardware Version (SDH,<text>)
Format: SDH, <text>

This command sets the value of the hardware revision characteristics in the device information
service. This command is only effective if the device information service is enabled by command ss.

Default: Current hardware version
Example: SDH, 2.1 —
Response: AOK /1 Success
Err // Device information service not enabled

// Syntax error, invalid parameter

Note: The PDS stores the parameter and is effective immediately without reboot.

47

@ MICROCHIP

https://www.bluetooth.com/specifications/specs/

5.4.2.3 Set Model Name (SDM,<text>)
Format: spM, <text>

This command sets the model name characteristics in the device information service. This command
is only effective if the device information service is enabled by command ss.

Default: P1C32CX
Example: SDM, RNBD350 —
Response: AOK // Success
Err // Device information service not enabled

// Syntax error, invalid parameter

Note: The PDS stores the parameter and is effective immediately without reboot.

5.4.2.4 Set Manufacturer Name (SDN,<text>)
Format: SDN, <text>

This command sets the manufacturer name characteristics in the device information service. This
command is only effective if the device information service is enabled by command ss.

Default: Microchip
Example: SDN, Microchip —
Response: AOK // Success
Err // Device information service not enabled

/1 Syntax error, invalid parameter

Note: The PDS stores the parameter and is effective immediately without reboot.

5.4.2.5 Set Software Revision (SDR,<text>)
Format: SDR, <text>

This command sets the software revision in the device information service. This command is only
effective if the device information service is enabled by command ss.

Default: Current Software Revision
Example: SDR, 1.0 —
Response: AOK // Success
Err /1 Device information service not enabled

// Syntax error, invalid parameter

Note: The PDS stores the parameter and is effective immediately without reboot.

5.4.2.6 Set Serial Number (SDS,<text>)
Format: sDs, <text>

This command sets the value of serial number characteristics in the device information service. This
command is only effective if the device information service is enabled by command ss.

Default: N/A
Example: SDS,12345678 —
Response: AOK /1 Success
Err // Device information service not enabled

// Syntax error, invalid parameter

Note: The PDS stores the parameter and is effective immediately without reboot.

@ MICROCHIP

48

5.4.3 GATT Operation on Server Role

5.4.3.1 User Customized Service
The Bluetooth SIG defines public profiles, services and characteristics. The SIG publishes the
specifications and requires conformance testing for any device using a public profile to ensure
interoperability between Bluetooth devices.

For use cases not covered by public service, Bluetooth allows the creation of a private service. The
RNBD350 module provides private and public services/characteristics in a GATT server and can work
with private service/characteristics in a GATT client role.

Note: All Bluetooth-adopted public service/characteristics have a 16-bit short UUID. All private
services/characteristics use a 128-bit long UUID.

The user can use pS and pC commands to add customized services and their characteristics. The
PDS saves all the customized services, and they are effective immediately; they are still effective
after reboot or power cycle. After defining all the services, the user must execute the ST command
to notify the event subscriber that there are changes in the existing service, and those changes are
effective immediately.

If the user prefers to use default and custom services at the same time, the default service must be
defined first by command ss before using any service configuration commands.

Command ss allows the user to enable/disable the built-in services.

Before defining the GATT service, the user must have basic knowledge about GATT service. For
more details on GATT service basic knowledge, refer to 9. Appendix A. Bluetooth Low Energy
Fundamentals.

5.4.3.2 Define Service Characteristic (PC...)
Format: PC, <hex16/hex128>, <hex8>, <hex8>

The pCc command sets private characteristics. It expects three parameters:

+ The first parameter is a 16-bit UUID for public characteristics or a 128-bit UUID for private
characteristics. There are many ways to generate a 128-bit UUID with little possibility of conflict.
For more details on UUID, refer to the Universally Unique Identifier (UUID).

+ The second parameter is an 8-bit property bitmap of the characteristics. For more details on the
characteristic property, see Table 9-1.

+ The third parameter is an 8-bit value that indicates the maximum data size in octet that holds the
value of the characteristics.

The user must call command pc after the service UUID is set by command ps. For more details on
command Ps, refer to 5.4.3.3. Define Service UUID (PS,<hex16/hex128>). If service UUID is set to be
a 16-bit public UUID in command ps, the UUID input parameter for command PC must also be a
16-bit public UUID. In addition, if the service UUID is set to be a 128-bit private UUID by command
ps, then the UUID input parameter must also be a 128-bit private UUID by command pc. The user
issues this command to add the characteristic to the service one by one until the characteristic is
defined.

Note: Do notissue a command with the same UUID, it cannot replace a previous identical UUID
characteristic but creates a redundant one.

The RNBD350 module supports up to four private services with eight characteristics for each service
and six public services with eight characteristics for each service.

Example: PC,11223344556677889900AABBC // Define a private characteristic with UUID
CDDEEFF, 14,05 0x11223344556677889900AABBCCDDEEFF.

// Itis readable, writable and can perform notification.
// Maximum data size for this characteristic is five octets.

49

@ MICROCHIP

https://en.wikipedia.org/wiki/Universally_unique_identifier

Response: AOK // Success

Err // Syntax error, invalid parameter or not enough space to
add new characteristics

Note: The PDS stores the defined services. The defined services are effective immediately.

5.4.3.3 Define Service UUID (PS,<hex16/hex128>)
Format: PS, <hex16/hex128>

Command ps sets the UUID of the public or the private service. The user must call this command
before command pc.

The effect of command ps is verified after a valid Pc command and after a reboot or power cycle.

Command ps expects one parameter that is either a 16-bit UUID for public service or a 128-bit UUID
for private service.

Example: PS,010203040506070809000A0B0 // Define a private service with UUID
CODOEQF 0x010203040506070809000A0BOCODOEOQF
Response: AOK // Success
Err /1 Syntax error, invalid parameter or not enough space to

add another service

Note: The PDS stores the defined services. The defined services are effective immediately.

5.4.3.4 Clear Customized Services (PZ)
Format: pz

Command Pz clears all customized services and characteristics. It is effective immediately. The
recommendation is to issue an ST command to notify the subscriber about the changes in the

services.
Example: PZ // Clear all private service and characteristics
// settings
Response: AOK // Success

Note: The defined services are clear in PDS immediately.

5.4.3.5 List Customized Service (LS[,<P,UUID>])
Format: LS [, <P, UUID>]

Command Ls lists the locally-defined server services and their characteristics in multiple lines of text
in an easy-to-read and easy-to-parse format. All list commands end their output with the keyword
END.

As an alternative, the command Ls takes one input parameter. If the input parameter is letter P, only
the UUIDs of all the services are printed out.

If the input parameter is the UUID of the service that is either a 16-bit UUID for public service or a
128-bit UUID for private service, the indicated service and all its characteristics are printed out.

If there is no input parameter, all the customized services and their characteristics are printed out.
The output format of command Ls is very similar to that of command Lc:

+ Thefirst line is the primary service UUID.

+ The second line starts with two spaces followed by the characteristic UUID, handle, characteristic
property and for the characteristics configuration handle, current configuration settings.

50

@ MICROCHIP

+ The property for characteristic value follows the definition listed in Table 9-1. The property for the
characteristic value must clear bit 4 and bit 5 (no notification or indication); whereas, the property
for the characteristics configuration must set to either bit 4 or bit 5.

+ The characteristic configuration shows the notification/indication status. Value ‘0’ means
notification/indication has not started yet. Value ‘1’ means the start of the notification started
and value 2 means the start of the indication.

Example: LS // Display all server services

Listing Services and its Characteristics on GATT Server:

180F
2A19, 001A, 02
2A19, 001B, 10, 0

5.4.3.6 Service Changed Indication (SI)
Format: st

Command s1I triggers service indication if there is a change in the local service in any of the
following ways:

+ Service/Characteristics change via the pc and ps command

+ Built-in service configuration by ss command

+ Services were removed by Pz command

Remote peer devices that are GATT client roles will receive a service changed indication if they

have configured the service changed notification Client Characteristic Configuration Descriptor in
the GATT service.

Example: SI // Issue service changed indication
Response: AOK // Success
Err // No service has been changed

5.4.3.7 Read Local Characteristic Value (SHR,<hex16>)
Format: SHR, <hex16>

The command sHR reads the content of the GATT service characteristic on the local device by
addressing its handle.

Command SHR takes one parameter, the 16-bit hex value of the handle, which corresponds to the
server service characteristic. The user must find a match between the handle and its characteristic
UUID by using command Ls.

This command is effective with or without an active connection. Reading the content of a
characteristic locally is always permitted regardless of the characteristic property. Only use the
characteristic property for remote access. The value returned is retrieved from the local device and
equals what was written recently.

Example: SHR, 001A // Read the local content of characteristic with handle
0x001A
Response: <Value read> /1 Success
Err // Syntax error or invalid parameter
N/A // Value is not assigned

5.4.3.8 Write Local Characteristic Value (SHW,<hex16>...)
Format: SHW, <hex16>, <hex value>

@ MICROCHIP

The command sHW writes the content of the characteristic in service to the local device by
addressing its handle.

This command takes two parameters. The first parameter is the 16-bit hex value of the handle that
corresponds to the characteristic of the server service. The user must find a match between the
handle and its characteristic UUID by using command LS. The second parameter is the content to be
written to the characteristic.

This command is effective only if the handle is valid in the local GATT service. The characteristic in
the local GATT service is always writable regardless of its property. The characteristic property is only
for remote access.

The content of a configuration handle is set remotely, which starts or stops notification/indication.
The recommendation is not to write to the configuration handle while there is no prohibition on
such operation.

The user can issue command SHW to change the local content of the characteristic, and the remote
device receives a notification/indication after meeting the following conditions:

* An active connection exists
* Remote device supports the corresponding service and characteristic in GATT client role
+ Property of corresponding characteristic supports notification or indication

+ Notification or indication service for the corresponding characteristic is started by the remote
device
Note: Notification or indication starting by sHw is only supported in a single link. For a multiple
link situation, use the suwWwM command.

Example: SHW, 0012, 64 // Set the local value of the characteristic battery level with
value handle 0x001A to 100%

// If the notification service is started on battery level
before, the local device notifies the new value of 100% to
the remote peer device

Response: AOK // Success
Err // Syntax error or invalid parameter
NFail /1 Notification/Indication failure

5.4.3.9 Write Local Characteristic Value for Multiuple Links (SHWM,<hex16>...)
Format: SHWM, <hex16>, <hex16>, <hex value>

Command sHWM writes the content of the characteristic in GATT service to the local device by
addressing its handle. This command takes three parameters. The first parameter is the 16-bit hex
value of the specific connection handle, the second parameter is the 16-bit hex value of the handle,
which corresponds to the characteristic of the server service, and the third parameter is the content
to be written to the characteristic. This command is almost the same as SHW, the difference is, when
writing to a characteristic with a CCCD enable, SHWM will start to notify/indicate the specific link by
the specific connection handle, but SHW only notifies/indicates the latest link.

Example: SHWM, 0070, 0014, 64 // Set local value of characteristic Battery Level with value
handle 0x001A to 100%.
/1 If notification service is started on Battery Level before,
local device notifies the new value of 100% to the remote
peer device that connection handle is 0x70.

Response: AOK /1 Success
Err // Syntax error or invalid parameter
NFail // Notification/Indication failure

52

@ MICROCHIP

5.4.3.10 Customized Multiple Services
If there is a need for customized multiple services, perform the following steps:

Use command Pz to clear any previously defined services.

Use command ps to set the UUID for the first service.

Use one or more command PC to add one characteristic at a time to the first service.
Use command Pps to set the UUID for another service.

Use one or more command PC to add one characteristic at a time to the service.

o v A wN =

(If necessary) Repeat step 4 and step 5 to define more services.

5.4.4 GATT Operation on Client Role
Before performing the characteristic access operation, the user must have basic knowledge about

GATT service. For more details on GATT service basic knowledge, refer to 9. Appendix A. Bluetooth
Low Energy Fundamentals.

To address server services, the first letter of the characteristic access commands is S; to address
client services, the first letter of characteristic access commands is C.

Bluetooth SIG adopted a group of public service specifications serving as the basis of interoperability
between devices. A 16-bit short UUID is assigned to all services and characteristics in the public
service. Any user-defined private services and their associated characteristics have 128-bit long
UUIDs. To optimize the handling of 128-bit characteristic UUIDs, Bluetooth provides the method of
using 16-bit handles.

The GATT server generates the handles. The GATT client reads the handle values as part of the
service discovery process when connecting to the GATT server. The RNBD350 module provides
commands to read and write both server and client attribute values by using these handles. To
address a characteristic by its handle, the second letter of the characteristic access commands
must be H. To read a characteristic, the third letter of the characteristic access commands is R; to
write a characteristic, the third letter of characteristic access commands is w. Before addressing the
characteristics, it is useful to know the accessible characteristics. The list commands group provides
two commands, L.C and LS, to list the client services and the server services, respectively.

The following table provides details about the three character formats of the GATT access command.
Each column represents a character of the GATT access command.

Table 5-26. Format of GATT Access Commands

C - Client H - Access by handle R - Read
S - Server W - Write

5.4.4.1 Read Remote Characteristic Value (CHR,<hex16>)
Format: CHR, <hex16>, <hex16>

The command CHR reads the content of the GATT service characteristic on the remote device by
addressing its handle.

Command CHR takes two parameters. The first parameter indicates the handle value (16-bit hex
value) of the characteristic in a particular server service. The second parameter is a 16-bit hex
value that indicates the Bluetooth Low Energy link connection handle. The user must find a match
between the handle and its characteristic UUID by using command Lc.

This command is effective under the following conditions:

* An active connection with peer exists.
+ Command C1I starts the client operation.

53

@ MICROCHIP

+ The handle parameter is valid and the corresponding characteristic is readable according to its
property.

The value returned is retrieved from the remote peer device.

Example: CHR, 001A,0071 // Read the content of the characteristic with the handle
0x001A from the remote device; the connection handle is
0x0071

Response: <Value read> // Success

Err // Syntax error, invalid parameter, not connected or

characteristic not readable

$ERR_READS% // Status string

5.4.4.2 Write Remote Characteristic Value (CHW...)

5.4.4.3

Format: CHW, <hex16>, <hex value>

The command CHW writes the content of the GATT service characteristic from the remote device by
addressing its handle.

This command takes two parameters. The first parameter is the 16-bit hex value of the handle
corresponding to the characteristic of the client service. The user must find a match between the
handle and its characteristic UUID by using command LC. The second parameter is the content to be
written to the characteristic.

This command is effective under the following conditions:

* An active connection with a peer device exists.
+ Command CT starts the client operation.

+ The handle parameter is valid and the corresponding characteristic is writable according to its
property.

The content value is written to the remote peer device. The writing method depends on the property
of the characteristic.

When writing a configuration handle to the remote device, Bluetooth specification defines the
format as 0x0000, 0x0001 or 0x0002. Value 0x0001 (01 00 over the air in little Endian) starts
the notification, value 0x0002 (02 00 over the air in little Endian) starts the indication and value
0x0000 stops both. To start the notification or indication depends on the service specification and
property of the characteristic. For more details, see Table 9-1.

Example: CHW, 001A, 64 /1 Set value of characteristic with value handle 0x001A-100
on the remote device
CHW, 001B, 0100 // Start notification on characteristic by writing 0x0001 to its
configuration handle 0x001B on the remote device
Response: AOK // Success
Err /1 Syntax error, invalid parameter, not connected or

characteristic not writable

Write Remote Characteristic Value for Multiple Links (CHWM,<hex16>,...)
Format: CHWM, <hex16>, <hex16>, <hex value>

Command CHWM writes the content of the GATT service characteristic to the dedicated remote device
by connection handle for multiple links.

This command takes three parameters. The first parameter is the 16-bit hex value of the connection
handle, and the second parameter is the 16-bit hex value of the handle corresponding to the
characteristic of the GATT service. The user must find a match between the handle and its

@ MICROCHIP

54

5444

5.4.4.5

characteristic UUID by using command 1.cM. The third parameter is the content to be written to

the characteristic.

This command is effective under the following conditions:

* An active connection with a peer device exists.

+ Command C1 starts the client operation.

+ The handle parameter is valid and the corresponding characteristic is writable according to its
property.

The content value is written to the remote peer device. The writing method depends on the property

of the characteristic.

When writing a configuration handle to the remote device, Bluetooth specification defines the

format as 0x0000, 0x0001 or 0x0002.

« Value 0x0001 (01 00 over the air in little-endian) - Starts the notification

« Value 0x0002 (02 00 over the air in little-endian) - Starts the indication

+ Value 0x0000 - Stops both notification and indication

To start the notification or indication depends on the service specification and property of the
characteristic. For more details, see Table 9-1.

Example: CHWM, 0071, 001A, 64 // Set the value of the characteristic with the value handle
0x001A to 0x64 on the remote device
CHWM, 0071, 0018, 0100 /1 Set connection handle value 0x0071

// Start notification on characteristic by writing 0x0001 to its
configuration handle 0x001B on the remote device

Response: AOK /1 Success

Err // Syntax error, invalid parameter, not connected or
characteristic not writable

Discovery Remote Services (ClI[,<hex16>])
Format: CI [, <hex16>]

Use command CI to start GATT service discovery from the GATT client.

The RNBD350 module starts as a GATT server by default. If the user also prefers the RNBD350
module to act as a GATT client, the command CI must be issued first.

Command c1 performs the essential service discovery process with the remote GATT server and
acquires supported public and private services and characteristics on the remote GATT server. The
RNBD350 module supports up to six client public services and four client private services. Each
client service is able to define up to eight characteristics. A connection with the remote GATT server
must be established before using the command Cl. The command has an option parameter that is a
connection handle to indicate a specific link for multiple links.

Command C1I retrieves critical client information from the remote GATT server; therefore, it is a
prerequisite over any Client Service related commands, such as Lc, CHR and CHW.

Example: CI // Start client role on RNBD350
Response: AOK /1 Success
Err // Not connected

List Remote Services (LC[,<P,UUID>])
Format: 1.C [, <P, hex16>]

@ MICROCHIP

55

5.4.4.6

5.4.5
5.4.5.1

Command Lc lists the available remote GATT server services and their characteristics that are
printed in multiple lines of text in an easy-to-read and easy-to-parse format. The output ends with
keyword END. The services and their characteristics are only available under three conditions:

* An active connection exists.
+ Peer device supports server role services.
* RNBD350 module issues command c1 before initiating client role service.

As an alternative, the command Lc takes one input parameter. If the input parameter is letter p,
only print out the UUID of all services.

If the input parameter is the UUID of the service that is either a 16-bit UUID for public service or a
128-bit UUID for private service, the indicated service and all its characteristics are printed out.

If there is no input parameter, print out all the services and their characteristics.

The output of command Lc has the following format:
« The first line is the primary service UUID.

+ The second line starts with two spaces followed by the characteristic UUID, handle, characteristic
property and, for the characteristic configuration handle, current configuration settings.

« The property for the characteristic value follows the definition listed in Table 9-1. The property
for the characteristic value must clear bit 4 and bit 5 (no notification or indication); whereas, the
property for the characteristic configuration must have either Bit 4 or Bit 5 set.

+ The following table provides details about the Battery Service (BAS) printout as an example.
0x180F in the first line is UUID for battery service.

+ The second line illustrates that battery level UUID is 0x2A19, its handle 0x001A and property 0x02
(Readable, a value handle). For more information, see Table 9-1.

+ The third line shows the battery level client characteristic configuration descriptor with
UUID 0x2A19, its handle 0x001B, property 0x10 (notify, a configuration handle) and current
configuration value 0 (notification is yet to start).

Example: LC // List all client services

Response: 180F
2A19,001A,02
2A19,001B,10,0

List Remote Services for Specific Link (LCM...)
Format: L.CM, <hex16>[, <P, UUID>]

The LcM command is a multi-link version of the Lc command. The L.cM command has a first
mandatory parameter that indicates the connection handle for a specific connection. The following
parameters are the same with the L.c command as well as the usage.

Example: LCM, 0071 // List all client services over the 0x71 connection handle

Data Transmission For Multi-link

Send Transparent Data (IE,<hex16>,<hex16>,<hex8>....)
Format: IE, <hex16>, <hex16>, <hex8><hex8><hex8>....

Use command 1k for UART transparent data transmission operation with the multiple remote

devices. This command expects three input parameters, which are: a connection handle of the
remote device, data length and 244 bytes of payload (maximum). This command only supports
Command mode in the single link and multi-link if the remote device supports the Transparent
profile.

@ MICROCHIP

56

Example: IE,0071,000C,53686£77206d652 // Send the data to the connection handle 0x0071, the data

074686520 length is 0x000C, the data is 53686f77206d652074686520
Response: AOK /1 Success
Err // Not connected or already enabled UART Transparent
mode

5.5 Peripheral Commands

5.5.1 Set UART Baud Rate (SB,<H8>,<H8>,<H8>, <H8>)
Format: sB, <hex8>[,<00-01>,<00-03>,<00,01>]

This command sets the baud rate of the UART communication. The user can query the existing
configuration values using the GB command. The input parameter is an 8-bit hex value in the range
of 00-0B, representing baud rate from 2400-921600 (see the following table). The sB command also
supports three optional parameters to configure the UART parity and stop bits.

+ The first parameter sets the desired baud rate.

+ The second parameter decides to Enable/Disable parity.

* Use the third parameter to set the Parity mode (see Table 5-29).
+ The fourth parameter sets the desired stop bits.

Table 5-27. UART Baud Rate Settings

00 921600
01 460800
02 230400
03 115200
04 57600
05 38400
06 28800
07 19200
08 14400
09 9600

0A 4800

0B 2400

The second parameter is used to enable or disable the parity check (see the following table).

Table 5-28. UART Parity Check Settings

00 Disable
01 Enable

The third parameter is used to select the Parity mode (see the following table), which works only
after enabling the parity check.

Table 5-29. UART Parity Mode Settings

I

00 Odd

@ MICROCHIP

57

5.5.2

5.5.3

........... continued

N [

02 Even

Table 5-30. UART Stop Bits

00 1
01 2
Default: 03
Example: SB, 07 // Set the UART baud rate to 19200
SB,04,01,02,00 // Set the UART baud rate to 57600

/1 Enable the parity check as Even mode
// Set the stop bits to 1 bit
Response: AOK // Success
Err /1 Syntax error or invalid parameter

Note: The PDS stores these parameters. The parameters are effective after reboot.

Set UART Baud Rate Immediately (SBI...)
Format: SBI, <hex8>[,<00-01>,<00-03>,<00,01>]

This command is the same as with the SB command but the setting can be effective without a
reboot. A user can use the GBI command to get the baud rate information.

Note: The host MCU needs to wait the guard time of 2 ms for the UART configuration transition
after the response of SBI command returns.

Default: 03
Example: SBI, 07 // Set the UART baud rate to 19200
SBI,04,01,02,00 /1 Set the UART baud rate to 57600
// Enable the parity check as Even mode
// Set the stop bits to 1 bit
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The PDS stores these parameters. The parameters are effective directly without a reboot but the user needs to
ensure 2 ms guard time.

Set Digital Input and Read Port (|1,<hex16>)
Format: | I, <hexl6>

Command | I reads multiple digital I/0 values and anticipates a single input parameter representing
the digital I/0 ports to be read. The input parameter is the digital IO pin bitmap in the 16-bit

hex format, with the I/0 pin bitmap format detailed in Table 6-5-1 TBD. The response to the | I
command is also a bitmap. If the corresponding pin to be read is high, the corresponding bit in the
response is set; otherwise, the bit is cleared

Table 5-31. Digital I/O Bitmap

0001 GPIO_PIN_RA3
0002 GPIO_PIN_RA8
0004 GPIO_PIN_RA9
0008 GPIO_PIN_RA10

@ MICROCHIP

58

5.5.4

5.5.5

5.5.6

........... continued

0010 GPIO_PIN_RB4

0020 GPIO_PIN_RB5

0040 GPIO_PIN_RB8

Example: |1,0003 // Read digital /0 GPIO_PIN_RA3 and GPIO_PIN_RAS.
// If return value is 0002, GPIO_PIN_RA3 is low and
GPIO_PIN_RAS8 is high.

Response: AOK // Success

Err // Syntax error, invalid parameter

Set Digital Output Port (| O,<hex16>,<hex16>)
Format: |0, <hex16>,<hex16>

Command | 0 sets the output value of the digital I/0 ports. It expects two input parameters. The first
parameter is the bitmap of digital /0 ports, and the second parameter is the output value in the
bitmap. The bitmap format is the same as in command | I (see Table 5-31). If the set GPIO pin is
occupied by a function pin whose function is enabled, it will reply to an error response.

Example: |0,0003,0001 // Set digital 1/0 output on GPIO_PIN_RA3 and
GPIO_PIN_RA8
// Set GPIO_PIN_RA3 high and GPIO_PIN_RA8 low
Response: AOK /1 Success
Err // Syntax error, invalid parameter

Set Event Indication Mask (EIM, <hex16>)

Format: ETM, <hex16>

The RNBD350 module activates one GPIO_PIN_RA3 pin to indicate that there are some changes
in the monitoring indicators. When the MCU detects the changes in the GPIO, the MCU sends

a command to read what indicators the change included. Therefore, the MCU can send further

commands to read the corresponding indicator status. The EIM command masks events that target
monitoring.

Use the 2-bytes bit mask parameter to set monitoring indicators (see the following table).

Table 5-32. Event Indication Bit Mask Settings

e e

1 Link quality (RSSI)
Others Reserved
Example: EIM, 0002 // Set Event mask enable link quality
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The PDS stores these parameters. The parameters are effective immediately without a reboot.

Get Event Indication Value (GEI)
Format: GEI
When the RNBD350 module detects an occurrence of a change in a monitoring event, the RNBD350

module activates the specific GPIO to notify the MCU. The MCU sends the GEI command to check
changes in the event.

@ MICROCHIP

59

Example: GEI // Get Event Indication value

Response: EI, 0002 // Link quality status changed (changed between normal
and weak)

5.5.7 Set Link Quality Indication (SIL,<1/0>, <hex8>, <hex8>)
Format: S1., <1/0>, <hex8>, <hex8>
The link quality indication feature allows the user to determine the quality of the link based
on the RSS! level. The link quality indication feature expects an existing connection between the
RNBD350 module and another Bluetooth Low Energy device. Whenever the RSSI value goes beyond

the threshold or goes below the weak RSSI limit, the event indication pin (RSSI indication pin) is
activated.

Use the first parameter to enable/disable the SIL command feature. The second parameter is the
RSSI normal threshold. The last parameter is the RSSI weak threshold.

Note: The normal RSSI value must be less than the weak RSSI value because it is an assigned value.

The default value assigned in firmware:
« RSSI normal threshold =-70 dB (Hex 46)

* RSSI weak threshold = -80 dB (Hex 50)

When there is a received link quality event, use the command M to query the RSSI value for the
specific connection.

Default: 0,00,00

Example: SIL,1,46,50 // Link quality indication feature is enabled. Set the normal
RSSI value as -70 dB and weak RSSI value as -80 dB.

Response: AOK // Success

Note: The PDS stores these parameters. The parameters are effective immediately without a reboot.

5.5.8 Get Link Quality Indication Setting (GIL)
Format: GTL

This command returns back the information about link quality indication settings.

Example: GIL // Get link quality indication setting

Response: 1,46,50 // Link quality indication is enabled, and the monitoring
threshold is -70 dB for normal RSSI and -80 dB for weak
RSSI

5.5.9 Read ADC Input Voltage (@,4)
Format: @, 4

Read the current voltage level. The unit of response is 0.001V. An analog signal can be provided

as an input to the RNBD350 module at the ADC pin (PB1). The RNBD350 module does the ADC
conversion using a fixed reference and provides the digital value. Prior to initiating the Read ADC
Input Voltage command, the user has to configure the factors of voltage detection using the
Set ADC reference Factors command (S@,<hex16>,<hex8>) command. Use the factors to get the actual
ADC voltage. This command expects the reference voltage and bias voltage percentage as input
parameters. For more details, refer to 5.5.10. Set ADC Reference Factors (S@,<hex16>,<hex8>).

Example: @,4 // Read battery voltage

Response: 0A28 // The analog value of 0A28 corresponds to the analog
voltage of 2.6V

60

@ MICROCHIP

5.5.10 Set ADC Reference Factors (S@,<hex16>,<hex8>)

5.5.11

5.5.12

5.5.13

Format: s@, <hex16>,<hex8>

This command is used to configure the factors of voltage detection based on the external circuit.
Use the factors to get the actual voltage. There are two parameters. The first one is the ADC
reference voltage, which has a unit of 0.001V. The second is bias voltage percentage. The default
reference voltage is 3.25V and the default bias voltage percentage is 100%.

Default: 0CB2, 64
Example: S@,0CE4, 32 // Set the reference voltage to 3.3V and percentage to 50%
Response: AOK // Success

Err // Syntax error or invalid parameter

Note: The PDS stores these parameters. The parameters are effective immediately without a reboot.

Set PMU Mode (SPMU,<0,1>)
Format: spmMU, <0, 1>

This command is used to set the PMU mode as MLDO mode or BUCK PWM mode. There is one
parameter, which is ‘0" or ‘1".

* '0'-To select MLDO mode
+ '1"-To select BUCK PWM mode

The default setting of the RNBD350 module is MLDO mode.

Default: 0
Example: SPMU, 1 /1 Set PMU mode as the BUCK PWM mode
Response: AOK // Success

Err /1 Syntax error or invalid parameter

Note: The PDS stores this parameter. The parameter is effective after a reboot.

Get PMU Mode Status (GPMU)
Format: GpPMU

This command is to get the PMU status, and the return value is ‘0" or ‘1"
* '0'- MLDO mode
« '1"- BUCK PWM mode

Example: GPMU // Get PMU status
Response: ‘0"or ‘1’ /10" is MLDO mode and ‘1’ is BUCK PWM mode

Set UART TX Indication (STl,<hex8>,<hex8>)
Format: STI, <hex8>, <hex8>

This command is to configure the settings of the UART TX indication. The UART TX indication is to
wake up the host MCU prior to UART data, so that the host MCU can receive data correctly. The first
parameter is the host MCU wake-up waiting time T1. This time indicates the wait time for the host
MCU, which is ready to receive data. The maximum value is 10 and the value ‘0’ means the host
MCU does not enter Sleep mode, and there is no need for a pin to wake it up. The optional second
parameter T2 is the time to keep the TX indication after UART data. The unit of both parameters is
millisecond (ms). The range of the optional second parameter T2 is from 1-255 ms. The dedicated
pin of the UART TX indication is PA2.

@ MICROCHIP

61

Figure 5-4. Set UART TX Indication

UART_TX Start UART_TX End
UART_TX_IND :
i T1 i 2
UART_TXD { N \ \ N \ N \ l
*T1: The Time Prior to UART Data
*T2: The Keeping Time After UART Data
Default: 00,03
Example: STI, 01,05 // Set host MCU wake-up waiting time to 1 ms
/1 Set the keeping time to 5 ms
Response: AOK /1 Success
Err // Syntax error or invalid parameter

Note: The PDS stores these parameters. The parameters are effective immediately without a reboot.

5.5.14 Get UART TX Ind Setting (GTI)

5.6

Format: GTI
This command is to retrieve the current settings of the UART TX indication.

Example: GTI // Get current UART TX indication setting
Response: 01,05

Device Test Mode (DTM)

The RNBD350 module has support for a special mode called Device Test Mode (DTM). By using
the bTM command, the user can configure the RNBD350 module to operate in the DTM. Staying in
the DTM mode, the RNBD350 module supports a series of DTM commands. In the DTM mode, all
the input commands and response events are in HCI format. The first byte of the HCI format is a
packet type, where 0x01 represents the command packet and 0x04 represents the event packet.
The RNBD350 module supports seven HCl commands. The following section describes each HCI
command in detail. If users send the software Reset command, the RNBD350 module resets and
enters into Data mode.

@ MICROCHIP

62

Figure 5-5. HC| Command Format

0 4 8 12 16 20 24 28 31
OpCode Parameter Total Parameter 0
OCF | OGF Length
Parameter 1 Parameter ...

Parameter N-1

Parameter N

Command parameters:

Op_Code: Size: 2 octets

Parameter Description

OXXXXX OGF Range (6 bits): 0x00-0x3F (0x3F reserved for vendor-specific debug commands)

OCF Range (10 bits): 0x0000-0x03FF

Parameter_Total_Length: Size: 1 octet

Parameter Description

0xXX Lengths of all of the parameters contained in this packet measured in octets. (N.B.: total length of parameters, not

number of parameters)

Parameter O - N: Size: Parameter Total Length

Parameter Description

0xXX Each command has a specific number of parameters associated with it. These parameters and the size of each of the

parameters are defined for each command. Each parameter is an integer number of octets in size.

@ MICROCHIP

63

5.6.1

5.6.2

Figure 5-6. HCI Event Format

0 4 8 12 16 20 24 28 31
Event Code Parameter Total Event Parameter O
Length
Event Parameter 1 Event Parameter 2 | Event Parameter 3

[]
[]
o

Event Parameter N-1 Event Parameter N

Event parameters:

Event_Code: Size: 1 octet

Parameter Description

0xXX Each event is assigned a 1-Octet event code used to uniquely identify different types of events.
Range: 0x00-0xFF (The event code OxFF is reserved for the event code used for vendor-specific debug events.)

Parameter_Total_Length: Size: 1 octet

Parameter Description

OxXX Length of all of the parameters contained in this packet, measured in octets

Event_Parameter O - N: Size: Parameter Total Length

Parameter Description

0xXX Each event has a specific number of parameters associated with it. These parameters and the size of each of the
parameters are defined for each event. Each parameter is an integer number of octets in size.

Device Test Mode Command (DTM)
Format: (DTM)

This command forces the RNBD350 module to operate in DTM mode.

Example: DTM // Enter device test mode
Response: AOK /1 Success
ERR // Syntax error or invalid parameter

Software Reset Command

Format:
Command OGF OCF Command Parameters Return Parameters
Software Reset 0x03 0x0003 — Status

@ MICROCHIP

64

5.6.3

5.6.4

Use this command to reset the RNBD350 module. Upon issuing the software Reset command,
the user receives a command complete event with return parameters. The RNBD350 module is
rebooted, and the device enters into Data mode.

Return parameters:

Status: Size: 1 octet
Parameter Description
0x00 HCI_LE_Read_Local_Supported_Features command succeeded

0x01 to OxFF HCI_LE_Read_Local_Supported_Features command failed. See [Vol 1] Part F, Controller Error Codes for a list of
error codes and descriptions.

Example: 01 03 0C 00 // Software reset command

Response: 04 O0E 04 01 03 0C 00 // Command complete event with status parameter
Rebooting // RNBD350 response
$REBOOTS // RNBD350 event status

Read BD_ADDR Command

Format:
Command OGF OCF Command Parameters Return Parameters
Read BD_ADDR 0x04 0x0009 — Status, BD_ADDR

This command reads the Public Device Address. Upon issuing the command, the user receives a
command complete event with return parameters (see the following figure). The return value will be
0x000000000000 if the device does not support public device addressing.

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_Read_BD_ADDR command succeeded.

0x01 to OxFF HCI_Read_BD_ADDR command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

BD_ADDR: Size: 6 octets

OXXXXXXXXXXXXX BD_ADDR of the device

Example: 01 09 10 00 // Read_BD_ADDR command

Response: 04 OE 0A 01 09 10 00 AC OE // Command complete event with status and BD_ADDR
AE F4 81 34 parameters

LE Read Local Supported Features Command

Format:
Command OGF OCF Command Parameters Return Parameters
LE Read Local Supported Features 0X08 0X0003 — Status, LE_Features

This command requests the list of supported LE features. The command complete event with return
parameters is generated (see the following figure).

Return parameters:

@ MICROCHIP

65

5.6.5

Status: Size: 1 octet

Parameter Description

0x00 HCI_LE_Read_Local_Supported_Features command succeeded

0x01 to OxFF HCI_LE_Read_Local_Supported_Features command failed. See [Vol 1] Part F, Controller Error Codes for a list of
error codes and descriptions.

LE_Features: Size: 8 octets

OXXXXXXXXXXXXX Bit Mask List of supported LE features. See [Vo! 6] Part B, Section 4.6.

Example: 01 03 20 00 // LE_Read_Local_Supported_Features command

Response: 04 OE 0C 01 03 20 00 FF F9 // Command complete event with status and LE_Features
00 04 OE 00 00 00 parameters

LE RX Test[v2] Command

Table 5-33. LE RX Test[v2] Command

LE RX test[v2] 0X08 0X0033 Rx_Channel, Status
PHY, Modulation_Index

Use this command to start a test where the DUT receives test reference packets at a fixed interval.
The tester generates the test reference packets. Do not allow the command during the LE TX test, so
the users can use the LE Test End command to stop the LE TX test, then start the command. The
command parameters include RX_Channel, PHY and Modulation_Index. The Rx_Channel and PHY
parameters specify that the receiver must use the RF channel and PHY. The RNBD350 module does
not support the Modulation_Index parameter, so the field of Modulation_Index parameter must be
filled ‘0. The command complete event with return parameters are generated.

Command parameters:
RX_Channel: Size: 1 octet

Parameter Description

N = 0xXX N = (F-2402)/2
Range: 0x00 to 0x27
Frequency Range: 2402 MHz to 2480 MHz

PHY: Size: 1 octet

0x01 Receiver set to use the LE 1M PHY
0x02 Receiver set to use the LE 2M PHY
0x03 Receiver set to use the LE Coded PHY
All other values Reserved for future use

Modulation_Index: Size: 1 octet

0x00 Assume transmitter will have a standard modulation index
0x01 Assume transmitter will have a stable modulation index
All other values Reserved for future use

@ MICROCHIP

66

5.6.6

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_LE_Receiver_Test command succeeded.

0x01 to OxFF HCI_LE_Receiver_Test command failed. TBD See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Example: 01 33 20 03 00 01 00 // LE RX test[v2] command
Response: 04 OE 04 01 33 20 00 // Command complete event with status parameter

LE TX Test[v2] Command

Table 5-34. LE TX Test[v2] Command

LE TX Test[v2] 0X08 0X0034 Tx_Channel, Status
Test_Data_Length,
Packet_Payload,
PHY

Use this command to start a test where the DUT generates test reference packets at a fixed

interval. The Controller transmits the packets. Do not allow the command during the LE RX test,

so the users can use the LE Test End command to stop LE RX test, then start the command.

The command parameters include Tx_Channel, Test_Data_Length, Packet_Payload and PHY. The
TX_Channel and PHY parameters specify that the transmitter must use the RF channel and PHY. The
Test_Data_Length and Packet_Payload parameters specify the length and contents of the payload of
the test reference packets. An LE controller supports Packet_Payload values 0x00, 0x01 and 0x02.
The command complete event with return parameters is generated.

Command parameters:

TX_Channel: Size: 1 octet

Parameter Description

N = 0xXX N = (F-2402)/2
Range: 0x00 to 0x27
Frequency Range: 2402 MHz to 2480 MHz

Test_Data_Length: Size: 1 octet

0x00 to OxFF Length in bytes of payload data in each packet

Packet_Payload: Size: 1 octet

Parameter Description

0x00 PRBS9 sequence “11111111100000111101...' (in transmission order) as described in [Vol 6] Part F, Section
4.1.5

0x01 Repeated ‘11110000’ (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5

0x02 Repeated 10101010’ (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5

0x03 PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5

0x04 Repeated 11111111’ (in transmission order) sequence

0x05 Repeated ‘00000000’ (in transmission order) sequence

@ MICROCHIP

67

5.6.7

0x06 Repeated ‘00001111’ (in transmission order) sequence
0x07 Repeated ‘01010101’ (in transmission order) sequence

All other values Reserved for future use

PHY: Size: 1 octet

Parameter Description

0x01 Transmitter set to use the LE 1M PHY

0x02 Transmitter set to use the LE 2M PHY

0x03 Transmitter set to use the LE Coded PHY with S = 8 data coding
0x04 Transmitter set to use the LE Coded PHY with S = 2 data coding
All other values Reserved for future use

Figure 5-7. Return Parameters

Status: Size: 1 octet

Parameter Description

0x00 HCI_LE_-Transmitter_-Test command succeeded

0x01 to OxFF HCI_LE_-Transmitter_-Test command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Example: 01 34 20 04 00 25 00 01 // LE TX test[v2] command
Response: 04 O0E 04 01 34 20 00 // Command complete event with status parameter

LE TX Test[v4] Command

Table 5-35. LE TX Test[v4] Command

Command Parameters Return Parameters

LE TX Test[v4] 0X08 0X007B Tx_Channel, Status
Test_Data_Length,
Packet_Payload,
PHY,
CTE_Length,
CTE_Type,
Switching_Pattern_Length,
Antenna_IDs[i],

Transmit_Power_Level

Use this command to start a test where the DUT generates test reference packets at a fixed interval.
The controller transmits the packets. Do not allow the command during the LE RX test, so the users
can use the LE Test End command to stop the LE RX test, then start the command. The command
parameters include Tx_Channel, Test_Data_Length, Packet_Payload, PHY, CTE_Length, CTE_Type,
Switching_Pattern_Length, Antenna_IDs and Transmit_Power_Level (see Command parameters 1
and Command parameters 2). The TX_Channel and PHY parameters specify that the transmitter
must use the RF channel and PHY. The Test_Data_Length and Packet_Payload parameters specify
the length and contents of the Payload of the test reference packets. An LE Controller supports
Packet_Payload values 0x00, 0x01 and 0x02. The RNBD350 module does not support some
parameters, including CTE_Length, CTE_Type, Switching Pattern_Length and Antenna_IDs, so the
fields of CTE_Length and CTE_Type must be filled 0x00. The field of switching pattern length must

@ MICROCHIP

68

be filled with 0x01, and the field of Antenna_IDs must be filled with 0x00. The command complete
event with return parameters is generated (see Return parameter).

Command parameters 1:

TX_Channel: Size: 1 octet

Parameter Description

N = 0xXX N = (F-2402)/2
Range: 0x00 to 0x27
Frequency Range: 2402 MHz to 2480 MHz

Test_Data_Length: Size: 1 octet

0x00 to OxFF Length in bytes of payload data in each packet

Packet_Payload: Size: 1 octet

Parameter Description

0x00 PRBS9 sequence “11111111100000111101...' (in transmission order) as described in [Vol 6] Part F, Section
4.1.5

0x01 Repeated ‘11110000’ (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5

0x02 Repeated 10101010’ (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5

0x03 PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5

0x04 Repeated 11111111’ (in transmission order) sequence

0x05 Repeated ‘00000000’ (in transmission order) sequence

0x06 Repeated ‘00001111’ (in transmission order) sequence

0x07 Repeated ‘01010101’ (in transmission order) sequence

All other values Reserved for future use

PHY: Size: 1 octet

0x01 Transmitter set to use the LE 1M PHY

0x02 Transmitter set to use the LE 2M PHY

0x03 Transmitter set to use the LE Coded PHY with S = 8 data coding
0x04 Transmitter set to use the LE Coded PHY with S = 2 data coding
All other values Reserved for future use

Command parameters 2:
CTE_Length: Size: 1 octet

0x00 Do not transmit a Constant Tone Extension
0x02 to 0x14 Length of the Constant Tone Extension in 8 ps units
All other values Reserved for future use

CTE_Type: Size: 1 octet

0x00 AoA Constant Tone Extension
0x01 AoD Constant Tone Extension with 1 ps slots

@ MICROCHIP

69

5.6.8

........... continued

0x02 AoD Constant Tone Extension with 2 ps slots

All other values Reserved for future use

Switching_Pattern_Length: Size: 1 octet

0x02 to 0x4B The number of Antenna IDs in the pattern

All other values Reserved for future use

Antenna_|Dsli]: Size: Switching_Pattern_Length * 1 octet

Parameter Description

OXxXX List of Antenna IDs in the pattern

Transmit_Power_Level: Size: 1 octet

Parameter Description

0xXX Set transmitter to the specified or the nearest transmit power level.
Range: -127 to +20
Units: dBm

Ox7E Set transmitter to minimum transmit power level

Ox7F Set transmitter to maximum transmit power level

Figure 5-8. Return Parameters

Status: Size: 1 octet
0x00 HCI_LE_-Transmitter_-Test command succeeded

0x01 to OxFF HCI_LE_-Transmitter_-Test command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Example: 01 7B 20 09 00 FF 00 01 00 // LE TX test[v4] command

00 01 00 OF
Response: 04 OE 04 01 7B 20 00 // Command complete event with status parameter

LE Test End Command

Format:
Command OGF OCF Command Parameters Return Parameters
LE Test End 0X08 0X001F — Status,

Num_Packets

Use this command to stop any test that is in progress. The Num_Packets is an unsigned number and
contains the number of received packets or transmitted packets. The command complete event with
return parameters are generated (see the following figure).

Figure 5-9. Return Parameters

Status: Size: 1 octet

@ MICROCHIP

70

Parameter Description

0x00 HCI_LE_Read_Local_Supported_Features command succeeded

0x01 to OxFF HCI_LE_Read_Local_Supported_Features command failed. See [Vol 1] Part F, Controller Error Codes for a list of
error codes and descriptions.

Num_Packets: Size: 2 octets

Parameter Description

OXXXXX Number of received packets or transmitted packets

Example: 01 1F 20 00 // LE Test End command

Response: 04 OE 06 01 1F 20 00 02 00 // Command complete event with status and Num_Packets
parameters

5.6.9 Command Complete Event

Format:
Event Event Code Event Parameters
Command_Complete OXOE Num_HCI_Command_Packets

Command_Opcode
Return_Parameters

Use this event to transmit the return status of a command and the other event parameters that are
specified for the issued HCl command. The Num_HCI_Command_Packets event parameter allows
the controller to indicate the number of HCl command packets the host can send to the controller.
The event parameters are shown in the following figure.

Figure 5-10. Event Parameters

Num_HCI_Command_Packets: Size: 1 octet

Parameter Description

0xXX The Number of HCI Command packets which are allowed to be sent to the Controller from the Host.
Range: 0 to 255

Command_Opcode: Size: 2 octets
Parameter Description
0x0000 No associated command

OXXXXX (non-zero) Opcode of the command that caused this event

Return_Parameter(s): Size: Depends on command

Parameter Description

0xXX This is the return parameter(s) for the command specified in the Command_Opcode event parameter. See each
command’s definition for the list of return parameters associated with that command.

Example: 04 O0E 04 01 7B 20 00 // Command complete event with status parameter

5.7 DFU Commands

In addition to the Data mode and Command mode, the RNBD350 supports a special mode called
Device Firmware Update (DFU) mode. This is a special mode implemented in the RNBD350 to carry
out the DFU operation. There are different possible ways to update the firmware with the help of
rich command set support.

71

@ MICROCHIP

+ Serial DFU - In this method, the firmware update on the RNBD350 device is achieved via serial
UART communication. The RNBD350 command set supports the DFU commands to carry out
serial DFU. To make use of the DFU update feature, the device must be first configured in DFU
mode. After that, the DFU commands are passed as serial commands in the correct order to
successfully update the firmware.

+ Over-the-Air (OTA) DFU - In this method, the OTA DFU process combines HOST OTA DFU and
Serial DFU processes. Initially, the firmware image from the OTAU manager (for example, a
mobile device) initiates the host DFU process. Subsequently, the image passes through the
RNBD350 and is saved on the host device. Upon complete reception and saving of the firmware
image via the host DFU process, the user must initiate a serial DFU to write the saved image to
the RNBD350. This upgrade process effectively updates the firmware inside the RNBD350. The
OTA DFU in RNBD350 is a combination of the host DFU and serial DFU.

+ Host OTA DFU through RNBD350 - This OTA update feature using a RNBD350 enables you
to remotely and securely update the firmware on a host MCU over a wireless Bluetooth Low
Energy connection. This feature is crucial for keeping embedded systems up-to-date, improving
functionality and addressing security vulnerabilities without the need for physical access to the
device.

Note: The firmware version in DIS is configurable by the Set Firmware Version (SDF) command.
Although it is same as the result of the v command by default, they could be different after
DFU, because the sFD/GDF command writes/reads the version information to/from PDS but the
v command prints the version information directly from the program code segment.

5.7.1 Serial DFU Procedure

In this method, the RNBD350 device is configured into DFU mode to support the serial firmware
update.

Figure 5-11. Serial DFU Block Diagram

RNBD_DFU_QTAPC Tool

USB Connection

RNBD350

The DFU commands are, then, sequentially passed to the device starting with a DFU update request
command (DFUU). The device, then, responds back with a maximum fragment image size as its
approval to accept the firmware update request. The maximum fragmented size is the range at

@ MICROCHIP

which the RNBD350 device can receive the data. The DFU firmware update, then, starts with a DFU
Update Start (DFUS) command and a continuous sequence of DFU image distribution commands.
The DFU image Distribution (DFUD) command appends the firmware data in fragmented size not
greater than the maximum size proposed by the RNBD350 device. All commands must be in ASCII
format, except the payload parameter in the DFUD (image distribution) command, which must be in
raw hex format to increase the transmission performance. The DFU image distribution command
is passed until the complete firmware file data is passed to the RNBD350 device. After image
transmission completion, the DFU Update Complete (DFUC) command is issued to indicate the
completion and request RNBD350 to perform validation. The newly-passed firmware image is, then,
validated by the RNBD350 device and responds back the with a status message. Upon receiving

a $VALIDATION SUCCESS% response from the RNBD350, the DFUE command is employed to
reboot the device, signifying a successful update. For more details on the demo procedure, refer

to 8. RNBD350 Device Firmware Update Procedure.

Note: After a device enters the DFU (Device Firmware Update) mode, it will remain in this mode if
an interrupt occurs or the process does not complete successfully. It will not revert to the Command
mode, and the RNBD350 will stay in DFU mode only.

To exit the DFU mode on the RNBD350, the complete command sequence must be followed
successfully. Otherwise, the device will remain in the DFU mode. The users cannot forcibly switch
from the DFU mode to the Command mode by simply plugging in or unplugging the USB cable.

The following figure illustrates the DFU mode transition among the Data mode and Command mode
for the serial DFU procedure.

Figure 5-12. DFU Mode Transition Procedure

Data Made

CMD Moda

—— Application Section

DFU abort / Time oul / Error handiling
enter DFU pbor v aul / Error handling

DFU

DFU gnd with transmission finished

“—\Lﬁ‘hn

The following conditions happen in RNBD350:

* In CMD mode:
- MCU may send command to change baud rate

Davice reset

[Bootloader Section

- MCU sends bDrFu command to enter DFU mode

+ Enter DFU mode:
- Disconnect all links, disable ADV activity and SCAN activity
- Disable Sleep mode

@ MICROCHIP

73

- Disable all interrupts

- Erase metadata block of application firmware

- Reboot to enter secondary bootloader
* In DFU mode:

- DFU abort, validation error, timeout occurred and error occurred will be at DFU mode
+ Reset to jump to the new image when the validation is successful

The following figure illustrates a sample MSC for DFU between the host MCU and the RNBD350.

Figure 5-13. MSC for DFU

Mcy RNBD350
e o
S

RNBOIS0 Ban balow action

1. Slop advedtising and scanning
2 Disconnact all links
g LI — S g v | 3 Disible all infarrupts
4. Erase Mota data block of applicatizn firmwara
5 Erase one page of UART parameter Mash and wiite the UART parameter ie ihe flash
E. Rabool 1o enber secondary bootloadar

Switch 10 DFU moda

Wpdate MCU image with size DxdB6400 bytes
P wpdate raquest (emd OFULLO0046400.01 SEQG000T <CRC1GMex1E>) | The payload is encryplad and the image id is SESDB002RNBOASE)

CRCIE is 8 CRCIG valoe

D00 s enee)| M fragemantad image size an RNBOS s 0x200
B, L ST

FW# update sta (cmd | DFUS)

A

leop A [ustii total image sent)

F distibution (eme | DFUD.0100. <payload=)

g | MCU sent FW image with payload size is 0100 By

o K

R L e e

FW wpdate complete {cmd - DFUC)H

Valldating
Walldation procedurs
-
L} [succennful cane]
AN ION SO BB L e s s e
Exit DF U mode (cmd - DFUE) >
i
Valldation succass. system rabooling aulematically
(g VALIOATICN FARY. |
DFis DFUE -
F
DR i A 0 B P i
DFU made
MCU RNBDIS0

5.7.1.1 Serial DFU Commands

5.7.1.1.1 Enter DFU Mode (DFU)
Format: DFU

Use the DFU command to enter into DFU mode from the Command mode. In DFU mode, the
command prompt CMD> changes to DFU>.

Example: DFU // Enter DFU Mode

@ MICROCHIP

Response: END // End of Command Mode, ‘DFU’ prompt will be printed.
DFU> // Success to enter DFU mode

5.7.1.1.2 DFU Update Request (DFUU...)
Format: DFUU, <hex32>,<hex8>,<hex32>,<hex16>

The DFUU command is initiated to request the new firmware image update. This command accepts
three parameters:

+ First parameter - The total image size, it must be 16-bytes aligned

+ Second parameter - Encryption status of the image

+ Third parameter - Flash image ID

* Fourth Parameter - CRC-16

The following table provides details for Flash image ID setting.

The RNBD350 responds back with the maximum allowed fragmented image size. The user can pass
an image fragment whose size is either less than or equal to the received number.

Example: DFUU, 00046400,01,9E000002, //DFU update request, the total image size is 0x46400, the
0148 image is encrypted and the Flash image ID is 9E000002,and
the CRC-16 is 0x0148.

The hexadecimal value 0x0148 represents the CRC-16 value,
which is obtained from the header section of a . bin file.
This value is used as an example here.

Response: DFUU, 0200 // Accept update, the allow max fragmented image size is
0x200

5.7.1.1.3 DFU Update Start (DFUS)
Format: DFUS

This command is sent to indicate the start for the firmware image update.

Example: DFUS // Start update for firmware image
Response: AOK // Device is ready for update
Err /1 Not proper configured by DFUU
BUSY // Device is busy, try again later

5.7.1.1.4 DFU Image Distribution (DFUD...)
Format: DFUD <hex16>, <hex content>

Use the DFUD command for new image distribution. The payload length must not be larger than

the max fragmented image size that the RNBD350 responded with in the DFUU command. When the
DFUD command is called, no other DFU command is acceptable until the completion of the update; it
means DFUD can be successively called in several times and cannot be terminated before sending all
of the image payload.

During the firmware distribution, if the timeout exceeds the maximum allowed timeout, the
RNBD350 enters into the Command mode.

Note: The hex content is an image payload. It is not represented in ASCII.

Example: DFUD, 0100, <hex> // Update fragmented of firmware image for length of
0x100
Response: AOK // Device received without error
Err // State error, payload size error or command parameter

error

75

@ MICROCHIP

5.7.1.1.5 DFU Update Complete (DFUC)

Format: DFUC

This command must be initiated after the image distribution is completed. This command indicates
the completion of the image distribution and to request that the RNBD350 to perform validation.
For the successful validation, RNBD350 responds back with the $VALIDATION SUCCESS% event.

After the completion of the update with successful validation, the command DFUE is accepted for
rebooting the device.

Example: DFUC // Update completed
Response: Validating // Transmission complete, start to do validation
$VALIDATION SUCCESS$% // Validation Success
$VALIDATION FAILURES$ // Validation failure
Err // Received total image size does not match the claim in
DFUU or call this command when the transmission is not
finished

5.7.1.1.6 Terminate DFU Operation (DFUE)

5.7.2

Format: DFUE

This command aborts the DFU procedure. The DFUE command can be called irrespective of the DFU
image distribution completion. The following are the two possible reactions:

+ Followed by a reboot - After finishing the transmission and successful validation, reboot and
return to the system's default Data mode

+ At DFU mode - When the DFU procedure is hot completed or the transmission was finished but
the validation failed.

Example: DFUE // Terminate DFU operation

Response: Rebooting or END // Rebooting due to DFU finished and success at DFU mode

Over-the-Air (OTA) DFU Procedure

The Over-the-Air (OTA) firmware upgrade is a protocol that allows Bluetooth® Low Energy devices

to receive a firmware image over the air from another Bluetooth Low Energy device. Microchip-
defined OTA profile and service enables firmware upgrades over the Bluetooth Low Energy link using
Generic Attribute Profile (GATT). The Bluetooth Low Energy OTA protocol defines the communication
between the OTAU target and the OTAU manager. The OTAU manager can be a mobile device (iOS/
Android) or any Bluetooth Low Energy device that implements the OTA GATT client protocol that
transfers the upgrade firmware to the OTAU target. The OTAU target implements the OTA GATT
server protocol to receive the new firmware image.

The OTA Device Firmware Update (DFU) process described combines the HOST OTA DFU and serial
DFU methods to ensure a secure and reliable firmware upgrade for the RNBD350 device.

For more details about the serial DFU, refer to 5.7.1. Serial DFU Procedure.
For more details about the HOST DFU, refer to 5.7.3. Host OTA DFU through RNBD350.

The process begins when an OTAU (Over The Air Update) manager, typically a mobile device, initiates
the HOST OTA DFU by sending the new firmware image to a host device, which can be a computer
or another dedicated hardware. The RNBD350 acts as a gateway, transferring the incoming firmware
from the OTAU manager to the host device, where it is stored safely. After that, the user must initiate
a serial DFU to write the saved image onto the RNBD350. Consequently, the firmware inside the
RNBD350 is upgraded. The OTA DFU in the RNBD350 represents a hybrid approach, integrating both
the HOST DFU and serial DFU processes.

@ MICROCHIP

76

Figure 5-14. OTA DFU Block Diagram

I ‘ RNBD Utility Tool ‘ I

il
Microchip Biluetooth Data

00000
Qo000

BLE UART Ble Sensor

=& o | &N
5 A ° . 4

ELE Provisioner BLE Smart

RNBD350 ADD ON BOARD . .I
RN B D 350 BLE Connect Beacon Ranging

BLE Sensor Node BLE OTA

This approach strictly recommends having a successful and secure Bluetooth Low Energy link
connection between two devices. Here, a peer device (OTA client profile) initiates a DFU request

to the remote device requesting a device firmware update. For the detail demo procedure, refer to
8.2. OTA DFU Process.

@ MICROCHIP

Figure 5-15. Sample MSC for OTA DFU (Combination of Host DFU + Serial DFU)

BLE_OTAPS_EwT_UFDATE REQ o

ol

APP enter DFU mode B

| ®WOTA_REQ,0070,00046400,9E000002,01010000,
i =fwlmageChksum/hex1G> <fwimageCrc16/hex15=% .
f E i

The parameters of OTA update request event are below list. k.
1. Connection handle: 0x0070,
2. The total image size: Jx45400 bytes
3. The image |D: SE00DOO2({RNED350)
4. The new image version: 1.1.0.0
8. The image check sum: fwlmageChksum
8. The image CRC18: fwlmageCrc18.
I, OTAA.01,0413
_, BLE_OTAPS_UpdateResponse() !
| Allow DFU B
BLE_OTAPS_EVT_START_IMD __:
| SOTA_START.O01% -
| Start update with MCU image b
loo [untll all Imagse payload sent] |
BLE_CTAPS_EWVT_UPDATING REQ o
| %O0TA_DATA <sequence_num> 0400, <payload=%
. OTAAD2
| ADK -
_ BLE_OTAPS_UpdatingResponsa() !
BLE_OTARPS_EWVT_COMPLETE_IMD ,___:

@ MICROCHIP

Return to previous mode

alt J [compiats with errar !
i
'+ WOTA_FAIL% o
1 ‘-. r\]
Return to previous mode
CEEwpEEE Wit G aRFaR] LT oT T O RO
i
'+ %OTA_COMPLETE% -
| OT&W.01
| B o
: Validation procedure
‘
alt [valldation success] !
I, OTAN,00
_ BLE_OTAPS CompleteResponseltrue) !
LA -
| : h
Return to previous mode
[valldation tail] :
' OTAV.02
_, BLE_OTAFS_CompleteResponse(false) |
| ADK >
Iy

RMED

@ MICROCHIP

79

ML RNBDIS0
OFL
END
R

=

RNBDIE) kas balow agtion
1. Stop advestising and scanaing
2 Dusconmect all hnks
< DFU= 3. Disakls ol intarrupts
4 Erase Moka data Block of applicatizn fiomwars
5. Erate one page of ART parameler Mash and wiite the UART parameler 12 the flash
E. Rabool 1o enber secondary bootloadar

Switch 10 DFU moda

Wpdate MCU image with size Oxd6400 bytes
FWW wpdate raquest (emd OFUU.0004G400.01 SEQQD002 <CRC1GMax16>) | The payload is encrypled and the image |d is SES0G002RNBOASH)
e e e &y)
CRCIE is 8 CRCIG valoe
(.DFUU Qo T))) L May fragmantad image size on RNBDISO is 0x200 &
B, PRI
FW wpdate start (omd : DFUS)
ADK
-
g DFUE

leop A [ustii total image sent)

FW distribution (emd - DFUD.0100. <payload>)

> MCU sant FW image with payload size is 0x100 =

AOK
-

o OFUR

- P wpdate complete femd - DFUCH
Valldat
. Validating

Valldation procedure
et

alt J [succensful cans]

' HVALIDATION SUCCESSY
Exit DF U moda (emd - DFUE)
o Fobooting
Validation succass, system rebooting awlematically

[lail cane] T
A MALIDATION FAILS

DFUs DFUE
;

DFU meds

KU RNBDIS0

5.7.2.1 Command on OTA Upgradable RNBD350 Side

When the upgradable RNBD350 device receives the OTA request from the remoter OTAPC RNBD350
device, the host MCU receives an event %OTA_REQ% request and waits for its approval. The host
MCU device can either accept (OTAA,01) or reject (OTAA,00) the request to allow the OTA upgrade on
the RNBD350 device.

5.7.2.1.1 Allow OTA DFU (OTAA...)
Format: 0T2A, <hex8> [,<MCU maximum buffer size/hexl16>]

This command indicates the host MCU acceptance for the DFU update request from RNBD350. 0 for
disallow and 1 for allow.

Example: OTAA, 01 // Allow OTA DFU procedure proceeding
Response: AOK // OTA DFU allow success
Err // Parameter error or response to OTA service error

5.7.3 Host OTA DFU through RNBD350
Host OTA DFU is used for host MCU FW upgrading.

When the OTA service receives the Host OTA DFU request from the OTA client profile (for example,
1. OTA client on mobile App; 2. OTA client on RNBD350), the RNBD350 enters the DFU mode

80

@ MICROCHIP

immediately. A status event %OTA_REQ% (the detail parameter is not described here) is sent to
the MCU and waits for the DFU decision. Different from OTA DFU, Serial DFU conveys two more
parameters for the MCU used, and they are image checksum and image CRC16 value.

Only the oTAA command is acceptable for the MCU to decide if the OTA DFU request is accepted
or not. Different from OTA DFU, the MCU could append the parameter of the maximum buffer size
used in the DFU procedure. If the MCU does not append the MCU maximum buffer size, RNBD350
defaults the maximum buffer size to 256 byes.

For the following procedure, there are several status events followed from RNBD350 to indicate the
procedure step and DFU's progressing status.

There is another new status event in the DFU proceedings %OTA_DATA,<sequence_num/
hex8>,<length/hex16>,<payload>%. The host image payload in fragmented hex value is conveyed
via this event. When the host receives this event, the 0TAA command (with parameter 2 for continue,
3 for error) can be issued to RNBD350 for notifying RNBD350 to continue to transmit more images
or to terminate the DFU procedure.

After all host images are transmitted, the %OTA_COMPLETE% status event will be sent to the host
MCU. In a normal procedure, the host MCU uses the OTAV command to notify validation start, then
the validation status (success or fail).

The DFU mode transition between the Data mode and the Command mode for the OTA DFU
procedure and the MSC example flow are illustrated in the following figures.

Figure 5-16. Host OTA through RNBD350 Transition Diagram

Yes

Data Mode }4

Previous is
CMD Mode Data Mode?
Receive
Update |
Request
Receive
Update
Request
DFU Abort/
Time out/
—> DFU Mode Error Handling

A

DFU End with Transmission Finished

81

@ MICROCHIP

Figure 5-17. Host OTA through RNBD350 Scenario

Step 1 ; Step 2 Step 3
(Generate encrypted BLE OTAU file) i (Transfer BLE OTAL! file to Device) (Upload Image to Host MCU)

/_\ Private Key /-\

i o L] LR
N @ A B o> (= A p——
= g =L BLE OTAU file Air image oA
25 MPLAB IEI i
A Kev ' Litill
N i Fost] E UART IfF
‘ ﬁ “‘ : Flas] @ MEU =
i Image TTTTTT
Encrypted
e e o o o by AES
| __ BLEOTAU Header | Key

82

@ MICROCHIP

OTAPS RNBD “mcu |

BLE_OTAPS_EVT_UPDATE_REQ

APP enter DFU mode ™

%O0TA_REQ,0070,00046400,9E0000002,01010000,
<fwlmageChksum/nex16= =fwimageCrc16/hex16=%

The parameters of OTA update request event are below list. &
1. Connection handle: 0x0070,

2. The total image size: 0x46400 bytes

3. The image |D: 9B000001(RNBD451)

4. The new image version: 1.1.0.0

5. The image check sum: fwimageChksum

6. The image CRC16: fwimageCrc16.

OTAA, 01,0400

BLE_OTAPS_UpdateResponse()

Allow DFU &
BLE_OTAPS_EVT_START_IND

%OTA_START,01%

Start update with MCU image

loop J luntil all image paylead sent]

BLE_OTAPS_EVT_UPDATING_REQ

%O0TA_DATA, <sequence_num=,03ED,<payload=%

OTAA,02
AOK
ELE_OTAPS_UpdatingResponse()
BLE_OTAPS_EVT_COMFLETE_IND
alt [complete with error]
%OTA_FAIL%
Return to previous mode o
[complete without error]
%OTA_COMPLETE%
OTAV.01
AQK
Validation procedure
alt / [validation success]
_ OTAV,00
BLE_OTAPS_CompleteResponse(trug)
AQK
Return to previous mode
[validation faill
OTAV.02
BLE_OTAPS_CompleteResponse(false)
AOK
Return to previous mode B
OTAPS | [RNBD MCuU

5.7.3.1 Continue Host OTA DFU (OTAA...)
Format: 0TAA, <hex8> [,<MCU maximum buffer size/hexl16>]

This command is the same as the command used in 5.7.2.1.1. Allow OTA DFU (OTAA...), but it
accepts more parameters in the host OTA DFU. Regarding the first parameter, besides “0” for
disallow, “1" is for allow the Host OTA DFU procedure proceeding or not, “2" is for continue, “3”
is for error is used when the host MCU receives an image and notifies the RNBD350 to continue
transmitting images or notifies that an error occurred.

An optional parameter in hex16 is used to notify the maximum buffer size used in the DFU
procedure. If MCU sends the command without appending this parameter, the RNBD350 default
maximum buffer size is 256 byes.

@ MICROCHIP

83

Example: OTARA, 02 // Fragmented image received, allow the RNBD350 to
continue to send more
image fragments

Response: AOK // Command success

Err // Parameter error or response to OTA service error

5.7.3.2 Validate Host OTA DFU (OTAV, <allow/hex8>)
Format: OTAV, <hex8>

When the host MCU receives %OTA_COMPLETE%, this command OTAV, <hex8> is used to notify
the RNBD350 of the validation status and that the validation is starting. In the parameter, “0" is for
validation success, “1" is for validation start and “2" is for validation fail. The other value is reserved.

Example: OTAV, 01 // validation start
OTAV, 00 // validation success
OTAV, 02 // validation fail

Response: AOK // command success
Err // state error

5.8 Deprecated Commands
This section lists the commands supported in the RN487x and deprecated in the RNBD350 module.

Table 5-36. Deprecated Commands

LW List current script

SC Set beacon features

SIB Set battery level indication

sr(M Set feature

SM Start timer

SW Assign GPIO functions

@,<0-5> Read analog port (only implement @,4 for Read ADC input voltage)
&, <MAC> Static private address assignment

&C Clear random address and use MAC address

&R Create and use a resolvable random address

I Initiate UART transparent operation with RN4677 or RN4678

I2C All 12C-related commands (includes 1A, 1Z, 1D, 1R, W, 1X)

SPI All SPI-related commands (includes {A, {Z, {X, }A, }Z, }R, W)

PWM PWM-related command

Script All embedded scripting feature-related commands (includes WC, WP, WR, WW)
Note:

1. The SR command does not include the following options:
* No beacon scan

* Running script after power-on
* Support RN4020 MLPD streaming
+ IDLE

5.9 Command Response and Status Event

This chapter lists the command response and status event that the module can return through
UART. The status event can be emitted using either Data or Command mode. Therefore, it is

@ MICROCHIP

84

important that the host MCU be able to recognize the status event while sending the data via
transparent stream at the same time.

Use the s$ command to modify the delimiters of the status event.

5.9.1 Command Response

The following table lists the command response returned by the RNBD350 module via UART when
the host MCU issues a command to the RNBD350 module.

Table 5-37. Command Response

AOK Command Success

Err() Syntax error, invalid parameter or specific condition is not matched
Scanning Start scanning

Trying Start connecting

Reboot after Factory Reset Reboot finished after factory reset

Rebooting Start rebooting

DFUU, <hex16>[, <hex32>] Allow MCU's DFU request and the max packet size is represented in hex16. An optional
2nd parameter is use to convey the firmware on target device and is represented in
hex32.

Note:

1. The reason for Err in each command is different. For more details, the user must refer to the individual commands.

5.9.2 Status Event

The following table lists the status event returned by the RNBD350 module via UART when a specific
event occurs.

Table 5-38. Status Event Returned by the RNBD350 Module

Status Event Default Delimiter (%)

System Configuration

$REBOOT% Reboot finished

$RMT _CMD_OFF% End of Remote Command mode

$RMT CMD ON% Start of Remote Command mode

$RMT _TX POWER% Remote TX power level

$PHY UPDATED, <ConnHandle>,<Tx PHY>,<Rx PHY>% PHY update successful

$ERR_PHYUPDATE, <ConnHandle>% PHY update fail

Advertising

$<Addr>,<Addr Type>,<name>, <UUIDs>,<RSSI>% Received connectable advertisement

$<Address>, <Addr_ Type>,<RSSI> Brcst:<Broadcast Payload>$% Received non-connectable
advertisement

$ADV_TIMEOUTS% Advertisement timeout, if
advertisement time is specified by
command A

Connection

$CONN_PARAM, <Interval>, <Latency>,<Timeout>% Update connection parameters of

connection interval, latency and
supervision timeout

85

@ MICROCHIP

veeeeeeeeecCONtinued

Status Event Default Delimiter (%)

$CONNECT, <0-3>,<Addr>,<ConnHandle>%

$DISCONNECT, <ConnHandle>%
$ERR_CONNPARM, <ConnHandle>%

%ERR_CONN, <ConnHandle>%
$ERR READ%

$ERR_WRITES%

Security

$BONDEDS%

SKEY : <Key>%
$KEY REQ%
$SECUREDS

$ERR RMT CMD%

$ERR_SEC%

GATT
$STREAM OPENS%

%INDI,<hdl>, <hex>%
Append connection handle in multiple link:

$NOTI,<hdl>,<hex>%
Append connection handle in multiple link:

%ERR_MEMORY%

$WC, <hd1l>, <hex>%
Append connection handle in multiple link:

$WV, <hdl>, <hex>%
Append connection handle in multiple link:

%RE_DISCV$%

DFU

%$INDI, <hdl>, <hex>,<connHandle>%

$NOTI, <hdl>, <hex>,<connHandle>%

$WC, <hdl>, <hex>,<connHandle>%

WV, <hdl>, <hex>, <connHandle>%

%0TA REQ, <connHandle >, <fwImageSize >, <fwImageId>,
<fwImageVer>[,<fwImageChksum/hexl1l6>,<fwImageCrcl6/hexl16>]%

@ MICROCHIP

Address Type<0-3>:

* 0-Public address type

* 1 -Random static address type

* 2 -Random resolvable address
type

* 3 -Random non resolvable
address type

Bluetooth® Low Energy connection

lost

Failed to update connection
parameters

Failed to connect a remote device
Failed to read characteristic value

Failed to write characteristic value

Security materials such as link key
are saved into PDS

Display the six digit security key
Request input security key
Bluetooth Low Energy link is secured

Failed to start remote command, due
to insecure Bluetooth Low Energy link
or mismatch PIN code

Failed to secure the Bluetooth Low
Energy link

UART transparent data pipe is
established

Received value indication <hex> for
characteristic handle <hdI>

Received value notification <hex> for
characteristic handle <hdI>

Running out of dynamic memory

Received start/end notification/
indication request <hex> for
characteristic configuration handle
<hdI>,<connHandle> (Connection
handle in multiple link scenario)

Received write request <hex>

for characteristic handle
<hdl>,<connHandle> (Connection
handle in multiple link scenario)

Received data indication of service
changed, redo service discovery

OTA DFU request with parameters

to describe the image. Optional
parameters “fwlmageChksum” and
“fwlmageCrc16” are used in Host OTA
DFU, they exist in OTAU Header v2

86

........... continued

Status Event Default Delimiter (%)

%0TA START, <imageType>%
%0TA UPDATING, <updatedPercentage>%

$OTA FAILS%

$OTA CCOMPLETES
%VALIDATINGS
$VALIDATION SUCCESS$

$VALIDATION FAILS%
$DFU_TIMEOUTS

$OTA_DATA,<fragment id/hex8>,<length/hexl16>,<payload>%

@ MICROCHIP

OTA DFU procedure starts for the
corresponding image type

OTA DFU updating progressing
indication

OTA procedure fails
OTA procedure completed
OTA/MCU DFU image validating

OTA/MCU DFU image validation
success

OTA/MCU DFU image validation fail
OTA/MCU DFU timeout

MCU DFU image segmented payload
is transmitted to the host, and

the payload content is in hex. This
event is used in the Host OTA DFU
procedure.

The first parameter is the fragment
ID that the Host MCU used in
identifying received payload data;
the second parameter is following
payload length, the third parameter
is the payload in hex

87

6.1

6.1.1

HCI Mode

The RNBD350 supports HCl mode. After transiting to HCl mode, the RNBD350 does not accept RN
commands anymore and accepts only HCl commands.

Note: The HCI mode is supported in RNBD350 v1.1 and later firmware versions.

+ The scheme to switch to HCl mode:

- The firmware determines the first received command is either in HCI format or is an RN
command after reboot if RNBD350 has no HCl mode record in PDS.

+ Before mode determination, it will issue Bluetooth Low Energy ADV working as an RN
application.

+ Disable the determination scheme when the Bluetooth Low Energy link is established,
even if no command comes. It means that the RN application is running now, and the
determination will be enabled again in the next reboot.

- Determine the scheme configuration.

+ The scheme can be configured by an RN command. For more details, refer to 5.2.25. Set
HCI Determination (SH,<0,1>).

* The default is to enable a mode switch scheme.

+ HCI mode storage in PDS:

- When it enters the HCI mode by determining the command format, store it in PDS. After that,
it will always be HCl mode, even after reboot.

- There is an HCl vendor command to clear the record. For more details, refer to 6.1.9. HCI
VND Mode Record Clear.

HCI Vendor Commands and Events

There are several vendor commands provided in RNBD350 to assist with vendor-specific tasks.
These vendor commands are achieved by an HCl command with different sub-opcodes. The OGF is
defined as 0x3F, and the OCF is 0x0000.

HCI VND Bluetooth Sleep Enable

Command OCF Sub-op Command Return
code Parameters Parameters
HCI_VND_BT_Sleep_Enable 0x0000 0x00 Sleep_Enable_Option Status

Description:

This command is the same with the SO command of the RN application to enable or disable low-
power operation of RNBD350. When the low-power scheme is enabled, it needs the UART_RX_IND
pin to wake up RNBD350 before the command arrives. For more details, refer to 5.3.1.6. Low Power
Control (50,<0,1>).

This command parameter will be stored to PDS.
Command parameters:

Sleep_Enable_Option: Size: 1 octet

0x00 Sleep mode disabled
0x01 Sleep mode enabled
All other values Reserved for future used

@ MICROCHIP

88

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_BT_Sleep_Enable command succeeded.

0x01 to OxFF HCI_BT_Sleep_Enable command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Event(s) generated (unless masked away):

When the HCI_VND_BT_Sleep_Enable command is complete, an HCI_Command_Complete event
generates.

6.1.2 HCIVND DFU Enable

Command OCF Sub-op Command Return

code Parameters Parameters

HCI_VND_DFU_Enable 0x0000 0x01 none Status

Description:

Request RNBD350 to enter DFU mode.
Command parameters:

None.

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_DFU_Enable command succeeded.

0x01 to OxFF HCI_DFU_Enable command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Enable command completes, an HCI_Command_Complete event
generates.

6.1.3 HCI VND DFU Request

Command Command Return
Parameters Parameters
HCI_VND_DFU_Request 0x0000 0x02 Total_Image_Size, Status,
Image_Encryption_Status, Max_fragmented_image_size
Image_ID

CRC16 (optional)

Description:
MCU requests update for specific FW image.
Command parameters:

Total_lmage_Size: Size: 4 octets

89

@ MICROCHIP

6.1.4

Parameter Description

N = OxXXXX Total image size information conveys from the OTAU header

Image_Encryption Status: Size: 1 octet

0x00 Image is unencrypted
0x01 Image is encrypted
All other values Reserved for future used

Image_|D: Size: 4 octets

N = OxXXXX Image ID is conveyed from OTAU header

CRC16: (Option) Size: 2 octets

Parameter Description

N = OxXXXX CRC16 is conveyed from OTAU header. The parameter is an optional parameter for V2 OTAU harder.

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_DFU_Request command succeeded

0x01 to OxFF HCI_DFU_Request command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Max_fragmented_image_size: Size: 1 octet

Parameter Description
0xXX Maximum length of image fragmented size

It must be at most of HCl command max length - 1 (sub-opcode), in other words, the maximum value is OXFE

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Request command completes, an HCI_Command_Complete event can be
generated.

HCI VND DFU Start

Command OCF Sub-op Command Return

code Parameters Parameters

HCI_VND_DFU_Start 0x0000 0x03 none Status

Description:

MCU starts update for specific FW image.
Command parameters:

none

Return parameters:

Status: Size: 1 octet

@ MICROCHIP

90

Parameter Description

0x00 HCI_DFU_Start command succeeded

0x01 to OxFF HCI_DFU_Start command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Start command completes, an HCI_Command_Complete event generates.

6.1.5 HCI VND DFU Packet Distribution

Command Sub-op Command Return
code Parameters Parameters
HCI_VND_DFU_Packet_Distribution 0x0000 0x04 Image_Payload Status
Description:

MCU transmits FW image payload.
Command parameters:

Image_Payload: Size: XX octets

N=0xXXXX... payload of DFU image.

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_DFU_Packet_Distribution command succeeded

0x01 to OxFF HCI_DFU_Packet_Distribution command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes
and descriptions.

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Packet_Distribution command completes, an HCI_Command_Complete
event generates.

6.1.6 HCI VND DFU Complete

Command OCF Sub-op Command Return
code Parameters Parameters
HCI_VND_DFU_Complete 0x0000 0x05 none Status,

Validation_Result

Description:

MCU sends image completed. Request RNDB to perform validation.
Command parameters:

none

Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_DFU_Complete command succeeded

91

@ MICROCHIP

........... continued

Parameter Description

0x01 to OXFF HCI_DFU_Complete command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Validation_Result: Size: 1 octet

0x01 Validation succeeded
0x02 Validation failed
All other values Reserved for future use

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Complete command completes, an HCI_Command_Complete event
generates.

6.1.7 HCI VND DFU Exit

Command Command Return
Parameters Parameters
HCI_VND_DFU_Exit 0x0000 0x06 none Status,
Exit_Action

Description:

DFUE can be called whether the transmission is finished or not; it can be used to abort the DFU
procedure as well. The following two reactions might occur:

+ Followed by a reboot - When transmission was finished and validation was successful, system
reboot occurs

« Exit DFU procedure - When DFU procedure is not complete or transmission finished but
validation failed

Command parameters:
none
Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_DFU_Exit command succeeded

0x01 to OxFF HCI_DFU_Exit command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Exit_Action: Size: 1 octet

0x00 Exit and reboot soon
0x01 Exit only
All other values Reserved for future use

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Exit command completes, an HCI_Command_Complete event generates.

92

@ MICROCHIP

6.1.8 HCI VND Application Version Inquiry

Command OCF Sub-op Command Return

code Parameters Parameters

HCI_VND_Application_Version_Inquiry 0x0000 0x07 none Application_ Version

Description:

Application version inquiry command
Command parameters:

None.

Return parameters:

Application_Version: Size: 4 octets

Parameter Description

OXXXXXXXXX The application version is presented in little endian.

Event(s) generated (unless masked away):

None

6.1.9 HCI VND Mode Record Clear

Command Sub-op Command Return

code Parameters Parameters

HCI_VND_Mode_Record_Clear 0x0000 0x08 none Status

Description:

The HCI VND Mode Record Clear command is used to reset the system running mode. The
HCI_VND Mode Record Clear command is followed by a command complete event and a system
reboot, which executed after a 500 ms delay. After the system reboot, the system will be on
RNBD350 Data mode by default. The HCl mode detection enables automatically.

Command parameters:
None.
Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_DFU_Complete command succeeded

0x01 to OxFF HCI_DFU_Complete command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Event(s) generated (unless masked away):

When the HCI_VND_DFU_Complete command completes, an HCI_Command_Complete event
generates.

93

@ MICROCHIP

6.1.10 HCI VND UART Parameter Configuration

Command OCF Sub-op Command Return
code Parameters Parameters
HCI_VND_UART_Parameter_Configuration 0x0000 0x09 Baud_Rate, Status
[Stop_Bit,
Parity_Mode,

Parity_Check,
Flow_Control]

Description:

The HCI_VND_UART_Parameter_Configuration command is used to configure the UART function. The
UART configuration is identical for both the RNBD mode and HCI mode.

Note: Stop_Bit, Parity_Mode, Parity_Check and Flow_Control are optional, when not specified in

the parameter, and the system uses the default setting as the following command parameters are
described.

This command parameter will be stored to PDS.
Command parameters:

Baud_Rate: Size: 1 octet

Parameter Description

0x00 Baud rate = 921600
0x01 Baud rate = 46080
0x02 Baud rate = 23040
0x03 Baud rate = 115200 (default)
0x04 Baud rate = 57600
0x05 Baud rate = 38400
0x06 Baud rate = 28800
0x07 Baud rate = 19200
0x08 Baud rate = 14400
0x09 Baud rate = 9600
0x0A Baud rate = 4800
0x0B Baud rate = 2400

Stop_Bit: Size: 1 octet

0x00 Stop bit = 1 (default)
0x01 Stop bit = 2

Parity_Mode: Size: 1 octet

Parameter Description

0x00 Parity mode = odd (default)
0x02 Parity mode = even

Parity_Check: Size: 1 octet

Parameter Description

0x00 Parity check disable (default)
0x01 Parity check enable

@ MICROCHIP

6.1.11

6.1.12

Flow_Control: Size: 1 octet

Parameter Description

0x00 Flow control disable (default)
0x01 Flow control enable
Return parameters:

Status: Size: 1 octet

Parameter Description

0x00 HCI_UART_Parameter_Configuration command succeeded

0x01 to OXFF HCI_UART_Parameter_Configuration command failed. See [Vol 1] Part F, Controller Error Codes for a list of
error codes and descriptions.

Event(s) generated (unless masked away):
When the HCI_VND_UART_Parameter_Configuration command completes, an
HCl_Command_Complete event generates.

HCI VND PTA Enable

Command OCF Sub-op Command Return

code Parameters Parameters

HCI_VND_PTA_Enable 0x0000 0x0A PTA_Enable_Option Status

Description:

This command is used to configure the PTA function.

Command parameters:
PTA_Enable_Option Size: 1 octet

Value Parameter Description
0x00 PTA function disabled
0x01 PTA function enabled

Return parameters:
Status: Size: 1 octet

Value Parameter Description
0x00 HCI_PTA_Enable command succeeded

0x01 to OxFF HCI_PTA_Enable command failed. See [Vol 1] Part F, Controller Error Codes for a list of error codes and
descriptions.

Event(s) generated (unless masked away):

When the HCI_VND_PTA_Enable command completes, an HCI_Command_Complete event generates.

HCI Hardware Error Event

HCI_Hardware_Error 0x10 Hardware_Code

Description:

@ MICROCHIP

95

The HCI_Hardware_Error event is used to notify the host that a hardware failure occurred in the
controller.

Event parameters:
Hardware_Code Size: 1 octet

0x01 DFU timeout

All other values Reserved for future use

6.2 HCI DFU Procedure
The following vendor commands are used in DFU procedure:
* HCI_VND_DFU_Enable
+ HCI_VND_DFU_Request
+ HCI_VND_DFU_Start
« HCI_VND_DFU_Packet_Distribution
+ HCI_VND_DFU_Complete
+ HCI_VND_DFU_Exit

@ MICROCHIP

96

Figure 6-1. HCI DFU Procedure

MCU RNBD451

HCI_DFU |

A\

HCI_DFU_CC_EVT.OK |

T T T T |
S
enter DFU procedure
FW update request (cmd : HCI_DFUU,00046400,01,98000001) _ '| Update MCU image with size 0x46400 bytes
>'| the payload is encrypted and the image id is 9B000001(RNBD451)

> HCI_DFUU_CC_EVTFE | max fragmented image size on RNBD451 is OxFE%

FW update start (cmd : HCI_DFUS)

< [CIDFUS_CC EVT.OK

loop /J [until total image sent]
FW distribution {cmd : HCI_DFUD,F0,<payload=)

[MCU sent FW image with payload size is UXFOH

flash writing Iﬁ
flash written 5

y

HCI_EVENT_STATUS SUCCESS

< HCl DFUD _CC ENT OK

FW update complete (cmd : HCI_DFUC)

_ HCI_EVENT_STATUS_SUCCESS

validation procedure

alt [successful case]
HCI_DFUC_CC_EVTVALIDATION_SUCCESS

exit DFU mode (cmd : HCI_DFUE)

__ HCI_DFUE_CC_EVTREBOOT

validation success, system rebooting automatically

T
_ HCI_DFUC_CC_EVT,VALIDATION_FAIL

exit DFU mode (cmd | HCI_DFUE)

SR A T

__ HCI_DFUE_CC_EVTEND

LN

terminate DFU procedure

MCU J RMNBD451

@ MICROCHIP

7.1

Application Demo Scenarios

This chapter describes a few application use cases about how to control the RNBD350 module

and connect it with peer Bluetooth devices (mobile phone). All the demo scenarios use a PC to
connect with the RNBD350 module as host emulation system. The RNBD350 Add On Board from
Microchip has the UART-to-USB converter that can be connected with a PC tool. Though the demo
steps explain using an emulated host environment (PC based), the procedure is applicable for the
RNBD350 module connected to the host MCU as well, where the host MCU must send the command
to the RNBD350 module instead of the PC.

Connecting to the RNBD350 Module Using the Microchip Bluetooth Data
Application

The simplest method to access the RNBD350 module is to connect it to a PC host that supports USB
CDC virtual COM (serial) ports. Use a terminal emulator application to send simple ASCIl commands
to the RNBD350 module. In this scenario, the PC acts as the host device. In the real-time application,
the RNBD350 module can be interfaced to any host MCU. The device function remains the same and
the host MCU can be programmed to function like the terminal emulator application.

To interact directly with the RNBD350 module, the following are required software:

+ PC Host supporting virtual serial port

+ Terminal Emulator Application - TeraTerm or CoolTerm is recommended

+ Microchip Bluetooth Data application for iOS or Android - Available on the App Store® (for iOS) or
the Google Play” Store (Android)

* Preprogrammed RNBD350 module

@ MICROCHIP

98

Figure 7-1. Installing Microchip Bluetooth Data Application

10:55 a

B[] Microchip
&9 Bluetooth Data

Microchip Technology Inc

About this app >

An app platform that supports Bluetooth data
features for MCHP BT platforms

Tools

Data safety >

4.1%
254 reviews ® 19 MB Rated for 3

MBD in Playstore(Andriod)

Microchip
*«,D Bluetooth Data
Microchip Tec ogy Inc.

MICROCHIP
TECHNOLOGY INC

Microchip Bluetc

00000
0000

BLE UART

MICROCHIP =8
M icrocHip °
B LuerootH

BLE Provisioning

D ata

Beacon Ranging
MBD Version:

MBD in App Store(iOS)

To establish the connection between the RNBD350 module and the Microchip Bluetooth Data
application, perform the following steps:

1.

Power on the RNBD350 module by connecting the RNBD350 evaluation board using a USB

Type-C® cable to the host PC.

Open the Terminal emulator software. For example, in this scenario, use TeraTerm.

Configure the serial port settings (see Figure 7-2).

@ MICROCHIP

99

Figure 7-2. Serial Terminal Recommended Settings

T Te}ar Te#n: éerial po;t setuip B X
Port: COM?2 v oK
Speed: 115200
Data: 8 bit v Cancel
Parity: none v
Stop bits: 1 bit v Help
Flow control: none v
Transmit delay
0 msecichar 0 mseciline

Note: By default, the RNBD350 module is programmed to operate in 775200 baud rate.
Configure the same in the terminal emulator software for effective communication.

4. Turn ON mobile Bluetooth, then tap BLE Smart in the Microchip Bluetooth Data application on
the mobile device.

100

@ MICROCHIP

Figure 7-3. Microchip Bluetooth Data Application Interface

= Microchip Bluetooth Data

00000
0000

BLE UART Ble Sensor

BLE Provisioner

BLE Connect Beacon Ranging

5. By default, the RNBD350 module is programmed to behave in the Data mode where the device
advertises during power-up. The device that advertises the Bluetooth Low Energy packets is
called the peripheral device. Each peripheral device has a unique advertising name. The mobile
acts as a Bluetooth Low Energy central device and scans the surrounding Bluetooth Low Energy
advertisement and lists all the available devices in the scan list.

6. Tap BLE Smart in the Microchip Bluetooth Data application.

7. Select the RNBD350_XXXX from the scan list (XXXX means the last two bytes of the device's BD
address).

101

@ MICROCHIP

Figure 7-4. Microchip Bluetooth Data Application Scan List

.28 BLE Devices STOPSCAN 7/
il Unknown Device 45548
L

39:55:53:C1:E9:E3 2 1150ms
i Unknown Device g-66d8
]

2D:8B:78:58:22:8F A 1179ms

Unknown Device g -scdB
10:51:C7:EEF6:46 N7 -

@

Unknown Device 4 -ssdB

@

26:BB:02:82:E9:1F 27 1212ms
o) RNBD350_03AC gs15 |,
"

S8EE:52:E0:03:AC N -

Unknown Device g -scdB
22:8A:8F:.DD:E4:B4 N -

¢

Unknown Device g -93dB
45:24:A6:AF:A1:A5 N -

G

Unknown Device 4 ssdB
7E.C7:BB:B3:43:A6 N -

(C

Unknown Device 4 -ssdB
18:C9:1E:FF:B6:1D A7 -

¢

Unknown Device g -0448
08:20:47:48:3E:12 N -

(C

ol'l

8. Click CONNECT to establish a connection with the RNBD350 module.

102

@ MICROCHIP

Figure 7-5. Microchip Bluetooth Data Application Connection with the RNBD350 Module

9. Upon connection, the connection details are updated in the serial terminal (see the following

figure).

@ MICROCHIP

CONNECT

RNBD350_03AC
Address: 8C:DE:52:E0:03:AC
State: Disconnected

Advertisement:

Manufacturer Data: 01 09 20 02 34 f6 b6 23 79
56 7b Te c1 94 83 70 6b b1 1b 0d d2 79 d5 63
el Oe ae

103

Figure 7-6. Displaying Log on Serial Terminal

H YT

File Edit Setup Control Window Help

tCONMECT . 2 . 4976 EADY@BY8 . 8871 ::::CONN_PARAM . 0006 . BOBA . B1F4 ., B071:.:: CONN_PARAMN . BB24 . BN
HE . B1F4. 08071 :[]

10. When connected, the Microchip Bluetooth Data application discovers all the services and
characteristics supported by the RNBD350 module (see Figure 7-7).

104

@ MICROCHIP

Figure 7-7. Microchip Bluetooth Data Application Connected with RNBD350 Module Interface

DISCONNECT ¢

RNBD350_03AC
Address: 8C:DE:52:E0:03:AC
State: Connected

Advertisement:

Device Name: RNBD350_03AC
Service Data:
0000feda-0000-1000-8000-00805f9b34fb-ff 01

Microchip Data Service
49535343-fe7d-4ae5-8fa9-9fafd205e455

Device Information Service
180a

Unknown Service
4d434850-253d-46b3-9923-e61b8e8215d7

11. Click any of the listed services to get the details about the characteristic. For example, to find the
Manufacturer Name, tap v from “Device Information Service” (see Figure 7-8).

105

@ MICROCHIP

Figure 7-8. Microchip Bluetooth Data Application Characteristics Read Interface

3:25 O + 40%Q
. Characteristic

Manufacturer Name
UUID: 2a29
Properties: Read

Read

Enable Notify/Indicate OFF
4D 69 63 72 6F 63 68 69 70
Microchip

Read

Enter Write Data...

7.2 Transparent UART Connection and Data Transfer using Microchip Bluetooth
Data App

To achieve bi-directional communication between the RNBD350 module and central device over

the Bluetooth Low Energy link, use Microchip data service. The transparent UART service is
instantiated as a primary service. The service UUID of the transparent UART Service is set to
49535343-FE7D-4AE5-8FA9-9FAFD205E455. The transparent UART service contains the following
data characteristics:

+ Transparent UART Transmit (TX) Characteristics UUID - 49535343-1E4D-4BD9-
BA61-23C647249616

+ Transparent UART Receive (RX) Characteristics UUID - 49535343-8841-43F4-A8D4-ECBE34729BB3
« Transparent Control Point (TCP) - UUID 49535343-4C8A-39B3-2F49-511CFF073B7E

7.2.1 Transparent UART Connection

Perform the following steps to establish a UART transparent connection using the Microchip
Bluetooth Data application:

1. Download and install the Microchip Bluetooth Data application for iOS or Android - Available on
the App Store (for iOS) or Google Play Store (Android) if not already installed.

2. Power on the RNBD350 module by connecting the RNBD350 evaluation board using a USB
Type-C cable to the host PC.

3. Open the terminal emulator software. In this scenario, it is TeraTerm.
Configure the serial port settings (see Figure 7-9).

106

@ MICROCHIP

Figure 7-9. Serial Terminal Recommended Settings

at Te;; Teirr:'n: éerial po]‘t setuip - i i e
Port: | COM2 ~ OK
Speed: 115200 -
Data: 8 bit v Cancel
Parity: none ~
Stop bits: 1 bit ~ Help
Flow control: none ~
Transmit delay
0 msecichar 0 mseclline

5. Turn ON mobile Bluetooth, then tap BLE UART in the Microchip Bluetooth Data application on
the mobile device.

Figure 7-10. Microchip Bluetooth Data Application Interface

3:45 0 4+ 38%Q@

= Microchip Bluetooth Data
00000
0000

BLE UART Ble Sensor

BLE Provisioner BLE Smart

BLE Connect Beacon Ranging

o

6. Tap PIC32CXBZ.

107

@ MICROCHIP

Figure 7-11. Microchip Bluetooth Data Application BLE UART Interface

1:14

BLE UART

&3] PIC32CXBZ

7. Click Scan to initiate the scanning.

Figure 7-12. Microchip Bluetooth Data Application BLE UART Scan List

11:35 RO % %:lQ33%

Devices SCAN

Al RNBD350_03AC
47

8. By default, the RNBD350 module is programmed to behave in the Data mode where the device
advertises during power-up. The device that advertises the Bluetooth Low Energy packets is
called the peripheral device. Each peripheral device has a unique advertising name. The mobile

108

@ MICROCHIP

acts as a Bluetooth Low Energy central device, scans the surrounding Bluetooth Low Energy
advertisement and lists all the available devices in the scan list.

9. Select the RNBD350_XXXX from the scan list (see Figure 7-12). The central device (mobile)
initiates a connection request to the peripheral device (RNBD350).
Note: XXXX means the last two bytes of the device address.

10. Upon connection, the device firmware updates the connection details in the serial terminal (see
Figure 7-13).

Figure 7-13. Displaying Log on Serial Terminal

File Edit Setup Cont Window Helg

¢CONNECT .2 ,.551D71F481CA, AA72»xCONN_PARAM,. A806 . A00A . A1 F4, 8072~ CONN_PARAM . B824 . AN
0@ ,01F4,08072%~STREAM_OPEN~»PHY_UPDATED,B8072 .82 ,.02x~ERR_CONNPARM:xCONN_PARAM,. 8010
- 0008, 094 872x%[]

11. After the successful Bluetooth Low Energy connection, tap the Settings icon to get the details
about the firmware version.

Figure 7-14. Microchip Bluetooth Data Application Settings Interface

RNBD350_03AC

Profile: TRP, Write Type: Write without Response

12. The following figure illustrates the details of the firmware version.

. 109
@ MICROCHIP

Figure 7-15. Microchip Bluetooth Data Application Settings Interface to Read Firmware Revision

Demo Mode

UART Change >
T100k.txt Select »
Profile

GATT WriteType(TRP only)

Write with Response »
Device Information

Manufacture Name: MCHP

Model Number: PIC32CX

Serial Number: N/A

Hardware Revision: N/A

|Firmware Revision: 1.0.0.7 |
Software Revision: N/A

System ID: N/A

Miscellaneous

Connect new device

Receive data timeout 2sec ¥
Remote Control mode

7.2.2 Transparent UART Data Transfer and Throughput Measurement

Transparent UART data transfer demonstrates the bi-directional data exchange between mobile
device and the RNBD350 module. The data from the Microchip Bluetooth Data application is
transferred to the RNBD350 module over the Bluetooth Low Energy link. The data needed for the
RNBD350 module is provided from the host PC via wired connection (MicroUSB), which is, then,
transferred to the mobile device over the Bluetooth Low Energy link. The data to the RNBD350
module can come from the host PC through any software application.

The following is the data flow sequence:
+ Mobile application to device to PC (via UART)
« PC(via UART) to device to mobile application

@ MICROCHIP

110

Figure 7-16. Data Flow

) Errrre—" ——r
Bluetooth via UART PC
Low Energy
Link

Mobile
(Application)

RNBD350 ADD ON BOARD

Demo Modes

The following are the two modes supported in UART mode:

« Burst mode - Designed for the throughput evaluation via massive data transportation
+ Text mode - Designed for the simple bi-directional data exchange

7.2.2.1 Text Mode

1. For testing the Text mode,
Host PC Side

+ Open a serial console application (TeraTerm) with the associated COM port of the RNBD350
module with the following settings.

Figure 7-17. Testing the Text Mode

o 4 Tera Term: Serial port setup X

) Port: COM?2 v oK ~
Speed: 115200
Data: 8 bit v Cancel
Parity: none v
Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

Mobile Side

+ Follow the same steps mentioned in 7.2.1. Transparent UART Connection steps 3to 10 to
establish the Bluetooth Low Energy UART connection with the RNBD350 module.

@ MICROCHIP

111

2. Tap Text mode to initiate the data transfer.

Figure 7-18. Initiating the Data Transfer

RNBD350_03AC

Profile: TRP, Write Type: Write without Response

UART, Profile: TRP, File: 100k.txt

Thoughput Clear
Tx size: xxxx B, Time: xxxx ms , xx KB/s

Rx size: xxxx B, Time: xxxx ms , xx KB/s

START

&

Text mode

3. Enter the text to be transferred from mobile to the RNBD350 module, then tap SEND. For
example, Hello World!. The RNBD350 module side receives the data, which is displayed on the
serial terminal of the RNBD350 module.

@ MICROCHIP

Figure 7-19. Serial Terminal of RNBD350

R MO 3O RiI0D3T%

RNBD350_03AC

Enter text here SEND

Enabled Mode:UART
[TX]:Hello World!

UART, Profile: TRP

Connection Param Clear

Burst mode

66 . ABBEA, B1F4. @675 CONN_PARAM. 8624 . 66|
@ 7% ERR COMMPaDM..COMN_PARAM. 0010

,02,82%
#STREAM_OPEN; He1llo MWorld?![]

4. Type any data on the serial terminal of the RNBD350 module to send it to the Microchip
Bluetooth Data application, which is received and printed on the receive view of the Microchip

Bluetooth Data application.

@ MICROCHIP

Figure 7-20. Output

11:45 RO % %iH031%

T,2 COl @ B1F4,088752CONN_PARAN,. AB24, 88
. TR _OPEN: _UPDATED, @I 'R_CONNPARM:~CONN_PARAM_AR1A
RN BD350—03AC #%STREAM_OPEN»~STREAM_OPEN:x»STREAM_OPENxHello World{Hello from RN

Enter text here

Enabled Mode:UART
[TX]:Hello World!
[RX]:H

[RX]:e

[RX]:I

[RX]:I

[RX]:3
[RX]:5
[RX]:0
[RX]:

[RX]:H
[RX]:e
BYI1-|

UART, Profile: TRP

Connection Param Clear

Burst mode

7.3 Creating and Accessing GATT Services Using UART Commands

The RNBD350 module allows the user to create Bluetooth SIG-defined public GATT services as
well as customer private services through UART commands. The specifications published by the
Bluetooth SIG defines the public GATT services. The user defines the private GATT services.

7.3.1 Creating Custom GATT Services
To create a private GATT service, enter the following configuration commands:

1. Power on the RNBD350 module by connecting the RNBD350 Add On Board using a USB Type-C
cable to the host PC.

2. Using the terminal emulator (TeraTerm), open the COM port associated with the RNBD350
module with the following settings.

3. Go to Setup>Terminal.

Under the New-line section, select CR+LF (Carriage Return, Line Feed) from the drop-down lists
for better reading of data.

114

@ MICROCHIP

Figure 7-21. TeraTerm Serial Port Setup

Tera Term: Terminal setup x

Terminal size New-line oK 7Y
GE X 32 Receive: CR+LF ~
M Term size = win size Transmit: GR+LF - Cancel

Auto window resize

Terminal ID: VT100 [] Local echo

Answerback: L1 Auto switch (VT<->TEK)

Coding (receive)

UTF8 - UTF8 -

Coding (transmit)

locale: ‘american

Figure 7-22. TeraTerm Terminal Setup

o Tera Term: Serial port setup v
Port: CoM2 “ oK =
Speed: 115200
Data: B bit v Cancel
Parity: none v
Stop bits: 1 bit v Help
Flow control: none

Transmit delay

0 msec/char 0 msecfline

5. Enter into Command mode:
a. Type the Command mode sequence $$$ to enter the Command mode.

b. Enter +to turn on ECHO.

6. Set to factory default:
a. Enter sF, 2 and verify the module is rebooted after entering the command.

b. Type the command mode sequence $$$ to enter Command mode.

@ MICROCHIP

Note: Use this command only to remove previously configured services and characteristics and
to bring the device to a factory Reset.
7. Create the private GATT service with three characteristics by entering the following command:
PS,4D6963726F636869702D524E34383730
PC, BF3FBD80063F11E59E690002A5D5C501, 02, 02

PC,BF3FBD80063F11E59E690002A5D5C502, 08,02
PC,BF3FBD80063F11E59E690002A5D5C503,18, 04

Figure 7-23. PS and PC Command

- The ps command creates the GATT private service, identified by UUID 16-byte value
4D6963726F636869702D524E34383730.

- The pc command creates the characteristics in the service. Each characteristic is identified
by the following UUIDs:

* BF3FBD80063F11E59E690002A5D5C501, BE3FBD80063F11ES59E690002A5D5C502,
BF3FBD80063F11E59E690002A5D5C503.

+ The second parameter is the characteristics property, and the third parameter is the size
of the data value of the characteristics.

- The second parameter in each command appears to represent a specific action or operation
to be performed:

+ 02 is used for reading
+ 08 is used for writing
+ 18 is used for combined write and notify operations
8. Reboot the module using the R, 1 command to ensure the new GATT details get stored in PDS.

9. To verify the GATT service is configured correctly:
a. Type the command mode sequence $$$ to enter the Command mode.

b. Issue the LS command to list the services.

@ MICROCHIP

116

7.3.2

Figure 7-24. LS Command

4D6263726F636862782D524E34383738

BF3FBD8BB63F11ES52E698002A5D5C50A1 . 1082 .82
BF3FBD8BB63F11ES59E698882A5D5C502 . 16084 .88

BF3FBD8BB63F11ES52E698002A5D5C5A3 . 1086 .88
BF3FBD88BB63F11E59E698882A5D5C503 .16887.18..8

Accessing the GATT Service Using UART Commands and the Microchip Bluetooth Data
Application

The result of the List Service command (Ls command) shows a custom GATT service (UUID:
4D6963726F636869702D524E34383730) with three characteristics identified by low order bytes
C501, €502, €503 from the 128-bit UUID. Each characteristic is assigned a 16-bit handle (1002,

1004,1006,1007 [see Figure 7-24]). Use handles to efficiently reference and identify characteristics in
the GATT service. A 16-bit handle is easier to manage than a 128-bit UUID.

Note: There are two handles referenced for characteristic C503.

As indicated by the 08 property value in 1006 for characteristic C503, this characteristic has the
write property enabled. In the same way, reference 1007, has the notification property 10 enabled.
This means that to write a value on characteristics C503, use reference 1006. To enable client
notifications on this characteristic, use reference 1007.

The following examples show how to read and write the GATT characteristics value by using UART
commands on the local GATT server device and how to read the value from the remote GATT client
(Microchip Bluetooth Data application) through the Bluetooth Low Energy link:

1. Usethe Server Handle Write (SHW)and Server Handle Read (SHR) commands to read and
write values to specific characteristics using assigned handle numbers.

- Command format: SHW, <handle>,<hex byte value>

- In the following reference, example value 1133 is written to handle 1002. Then, the
previously written value (1133) is overwritten to 1122.

Figure 7-25. Writing and Reading GATT Value by Handle Reference

MD> SHY.1882.1133
0K

MD> SHW,.1882,.1122
0K

MD> SHR.1882

@ MICROCHIP

117

2. ltis also possible to access the GATT server over the Bluetooth Low Energy connection using
the Microchip Bluetooth Data application. Launch the Microchip Bluetooth Data application and
connect to the RNBD350 board. For more details, refer to 7.1. Connecting to the RNBD350
Module Using the Microchip Bluetooth Data Application.

3. The following are the steps to read the value of the GATT characteristic
bf3fbd80-063£f-11e5-9€69-0002a-5d5c501.

- Tap Vto select the service with UUID 4D6963726F636869702D524E34383730 listed as
Unknown Service.

Figure 7-26. Unknown Service

DISCONNECT ¢

RNBD350_03AC
Address: 8C:DE:52:E0:03:AC
State: Connected

Advertisement:

Manufacturer Data: 01 09 20 02 ae 58 94 d5 5a
2d fO b5 02 74 a4 e8 8a 72 d9 fd 05 a8 80 1d 4e
83 f3

Microchip Data Service
49535343-fe7d-4ae5-8fa9-9fafd205e455

Device Information Service
180a

Unknown Service
4d434850-253d-46b3-9923-e61b8e8215d7

Unknown Service
4d696372-6f63-6869-702d-524e34383730

- Tap to select the Unknown Characteristic with UUID
bf3fbd80-063f-11e5-9e69-0002a-5d5c501.

@ MICROCHIP

118

Figure 7-27. Unknown Characteristics

DISCONNECT &

RNBD350_03AC
Address: 8C:DE:52:E0:03:AC
State: Connected

Advertisement:
Manufacturer Data: 01 09 20 02 ae 58 94 d5 5a

2d f0 b5 02 74 a4 8 8a 72 d9 fd 05 a8 80 1d 4e
83 f3

180a

Unknown Service
4d434850-253d-46b3-9923-e61b8e8215d7

Unknown Service
4d696372-6f63-6869-702d-524e34383730

Unknown Characteristic

Characteristic

bf3fbd80-063f-11e5-9€69-0002a5d5¢c501
Read

- Tap Read. The characteristic value is read from the RNBD350 module into the Microchip

Bluetooth Data application.

@ MICROCHIP

Unknown Characteristic

Characteristic

bf3fbd80-063f-11e5-9e69-0002a5d5¢502
Read

Unknown Characteristic

Characteristic
bf3fbd80-063f-11e5-9e69-0002a5d5¢c503

119

Figure 7-28. Reading the Characteristic Value from the RNBD350 Module

& Characteristic

Unknown Characteristic
Characteristic
UUID: bf3fbd8o-063f-11e5-9e69-0002a5d5c501

Properties: Read

Read
Enable Notify/Indicate OFF
1122

Read

Enter Write Data...

The following example shows how to write a value to a GATT characteristic from the Microchip

Bluetooth Data application, and how to read and verify the same on the device side using the UART
command.

Perform the following steps to write a value to the GATT characteristic C503:

1. Tap V to select the service with UUID 4D6963726F636869702D524E34383730. Three
characteristics created under the service are visible on the mobile screen.

o 120
@ MICROCHIP

Figure 7-29. List of Available Services

2. Tap the characteristics with UUID BF3FBD80063F11E59E690002A5D5C503.

@ MICROCHIP

DISCONNECT &

RNBD350_03AC
Address: 8C:DE:52:E0:03:AC
State: Connected

Advertisement:
Manufacturer Data: 01 09 20 02 ae 58 94 d5 5a

2d f0 b5 02 74 a4 €8 8a 72 d9 fd 05 a8 80 1d 4e
83 f3

180a

Unknown Service
4d434850-253d-46b3-9923-e61b8e8215d7

Unknown Service
4d696372-6f63-6869-702d-524e34383730

Unknown Characteristic

Characteristic

bf3fbd80-063f-11e5-9e69-0002a5d5¢c501
Read

Unknown Characteristic

Characteristic

bf3fbd80-063f-11e5-9e69-0002a5d5¢c502
Read

Unknown Characteristic

Characteristic
bf3fbd80-063f-11e5-9e69-0002a5d5¢c503

121

Figure 7-30. Selected Specific Characteristics for Write Operation

Characteristic

Unknown Characteristic
Characteristic

I UUID: bf3fbd80-063f-11e5-9e69-0002a5d5c503 I
Properties: Write Notify
Notify/Indicate: No

Read
Enable Notify/Indicate
Read or Notified Data

Write

Enter Write Data

Write

3. Turn ON the “Enable Notify/Indicate”.

To read data from the server, we must first enable the Client Characteristic Configuration
Descriptor (CCCD). To enable the CCCD, send the following command to the serial terminal:

SHW, <handle>, 0100

Notes:

a. To correctly configure the CCCD, we need to specify the respective notification handle. For
instance, if we consider the screenshot provided and the notify handle associated with the
characteristic is 1007, the command to enable notifications for this characteristic would be:
SHW,1007,0100.

b. The value 0100 means enabling notifications for a particular characteristic. This command is
essential for initiating communication and ensuring that the CCCD is properly configured to
facilitate data exchange between the client and the server.

@ MICROCHIP

122

Figure 7-31. Enable Notify/Indicate for Characteristic

4. From the “Write" option, type a 4-byte value, then tap Write. The notification is enabled for this
characteristic; therefore, a notification for the value is automatically generated and is available

under the read section.

@ MICROCHIP

Characteristic

Unknown Characteristic
Characteristic

UUID: bf3fbd80-063f-11e5-9e69-0002a5d5¢503
Properties: Write Notify
Notify/Indicate: Yes

Read
Enable Notify/Indicate | ON |
Read or Notified Data

Write
Enter Write Data

Write

123

Figure 7-32. Write 4 Bytes of Value to the Characteristic

Characteristic

Unknown Characteristic
Characteristic

UUID: bf3fbdao-063f-11e5-9e69-0002a5d5c503
Properties: Write Notify
Notify/Indicate: Yes

Read

Enable Notify/Indicate
3344 5566

Write

/ 33445566

5. Read the characteristic value at the device side using the SER command, and verify whether the
value written from the mobile application took effect for the handle 1006.

Figure 7-33. Output

s e _ o~ = Al .
Eila EArk yeturp _ontro Windo Helg

7.4 Module to Module Connection
In 7.3.2. Accessing the GATT Service Using UART Commands and the Microchip Bluetooth Data
Application, the RNBD350 module acts as a Bluetooth Low Energy peripheral and connects with a
mobile phone, which acts as the Bluetooth Low Energy central. This section explains establishing a
connection and data transfer between two RNBD350 modules. When the board is powered up, by
default, the RNBD350 module is in the Data mode doing the Bluetooth Low Energy advertisement.
To establish a module-to-module connection, one of the devices must be in the Central state
initiating a scan request to capture the nearby Bluetooth Low Energy advertisement.

@ MICROCHIP

124

Figure 7-34. Module to Module Connection

EHPESN

PG via UART

e, L]

via UART PC

l Bluetooth .

Low Energy
Link

03 i = i0
RNBD350 ADD ON BOARD,

RNBD350 ADD ON BOARD RNBD350 ADD ON BOARD

The user can achieve the central configuration on the RNBD350 module by configuring the device
into Command mode and issuing the F command. With this, the device shifts its Operating mode
from peripheral to central device and starts scanning.

The test setup consists of two RNBD350 evaluation boards (both can either be connected to the
same PC or a different PC via microUSB cable).

The command sequence is as follows:

1. Power ON the RNBD350 module by connecting the RNBD350 evaluation board using a USB
Type-C cable to the host PC.

2. Using the terminal emulator, open the COM port associated with the RNBD350 module with the
following settings.

Figure 7-35. Module to Module Connection Setup

o 4 Tera Term: Serial port setup X

: Port: COM?2 v oK A
Speed: 115200
Data: 8 bit v Cancel
Parity: none v
Stop bits: 1 bit v Help
Flow control: none v

Transmit delay

0 msecichar 0 mseciline

3. By default, this device is in Peripheral mode doing advertisements at a regular interval.

4. Power ON another RNBD350 evaluation board using a USB Type-C cable to the host PC. Open
another instance of the terminal emulator on the host PC for the RNBD350 module that needs

125

@ MICROCHIP

to be configured in Central mode for the associated COM port of the RNBD350 module with the
following settings.

Figure 7-36. TeraTerm Serial Port Setup

Tera Termc Serial port setup *

Port: Com2 v i =
Speed: 115200

Data: B bit v Cancel

Parity: none "

Stop bits: 1 bit v Help

Flow control: none v

Transmit delay

0 msec/char 0 msecfline

5. Type $$$ to enter the Command mode.
6. Type +to enable echo.

7. Issue command F to initiate an active scan. The F command puts the RNBD350 module into the
Central mode and initiates scanning. The scanning operation captures all the available Bluetooth
Low Energy packets in the nearby surrounding.

8. Wait until the inquiry finishes and finds the MAC address/address type of the device to be
connected.

9. Issue the X command to terminate the scanning.

10. Enter C,<0,1>,<MAC address> to attempt a connection with the remote device, where the first
parameter indicates the address type that is available in the inquiry result:

- '0" - Public address
- '1'- Private address

After connection, both RNBD350 modules are in the Data mode and data can be transferred
between the devices. The remote peer device receives characters typed in the terminal emulator
and vice versa.

To terminate the connection, type $$$ to return to the Command mode, then type command K, 1.

126

@ MICROCHIP

Figure 7-37. Terminating the Connection

1 COMST - Tera Term VT -] X ol

File Edit Setup Control Window Help File Edit Setup Control Window Help

“REBOOT%CMD> ECHO ON PN REBOOT % CONNECT , 0, 3481 FAAEVE?A . BA71.x PHY_UPDATED,B071.82,02%%STREAM_OPEN.xPHY U
PDATED. 8A71 , @2 .82 CONN_PARAM . AB1 8. ABBA. AB48 , BA71%
CHD> F

[Scanning Helloe from Central:DISCONMECT:[]

x192@C336C9F5, B1,-39,@1, BA, Brcst : 1 EFFA6AAAA1 AT 20820 7F5 B9 2E894ABF28@2585BBB8313BB1
(DS EC4BFA76F59Fnx:

#435D720B6782,01,-38.01, 80, Brcst :1EFFO600010%2002F2CA16158 FDADCY23A1CP434E3385818)
I549BAF8BA32ABD

«B8DEC3IZ8E2A2, 01, -4D, 01, 80, Brcst :1EFFA600010%2002C25F9AB82729D3B2D58D6DE4D618358)
[B338C27E3D51720x

<3CC3CC4DB?F4, 61 . -2E. @1, B, Brest : 1 EFFBAAAG10%20028068339A4718EAD3AD?BE4EAFFB6AEB)
[32E3DD1619BEECC

#3481 FAREBEAZ, 00, , FEDA,-25,01 . 80%
<3481 FANEBEA2, BA,. RNBD45x_AEA2, . —25 .61, B0z

#8568AF1B7ED6, 01.,-3C. 01, 80, Brcst -1 EFFO600010%20022DFAB34C7DBEF?3915B38B71221961B)
fC76 F543BA45CBC6 %

% <25872CIDE4AS, 81, -3C, 81,00, Brest :1EFFB6 008189 200209AC898F5221C1626BE4AB641EC?23
23488 7BC?CEABFF7x
NOK

CMD> C.B.3481F4AEWEA2
[rying

J*CONNECT , @, 3481F4AEQEA2 , B@71xPHY_UPDATED, BA71, 2% STREAM_OPEN:

Hi from Peripheral

ICMD> D1 SCONNECT [l

7.5 Virtual Sniffer

7.5.1 Introduction

The RNBD350 module supports a special feature called virtual sniffer. The Bluetooth virtual sniffer
allows the user to capture and view live HCl traces in a supported packet analyzer tool (Frontline
Wireless protocol suite) that runs locally on their test machine. The virtual sniffing function simplifies
Bluetooth development and is easy-to-use functionality. This feature showcases the debug capability
of the RNBD350 module, which helps the users to quickly fix issues by capturing and analyzing

the packets exchanged between the RNBD350 module and peer device. This feature makes the
RNBD350 module a more reliable device for the developers as it can even perform as a wireless
packet sniffer, which eliminates the need for extra sniffing hardware.

In addition to the UART used for the data exchange (ASCIl command support), the RNBD350 module
supports a debug UART (TXD) to implement the Bluetooth virtual sniffing feature. The log from the
device is collected from this debug UART interface and is, then, fed to the packet analyzer tool. The
debug UART operates in the 921600 baud rate, and it is not configurable.

7.5.2 Enable Virtual Sniffer

The ASCIl command support of the device allows the configuration of the virtual sniffer functionality.
By default, the virtual sniffer functionality is disabled in the firmware. The user must enable the
feature externally with the help of the Set Debug Log (SLOG, <hex8>)command.

+ Command to enable virtual sniffing - SLOG, 08<CR><LF>

+ Invalidate virtual sniffer feature - SLOG, FF<CR><LF>, This command invalidates the virtual sniffer
feature and cannot be enabled any more unless resetting the settings with a factory reset.

For more details about the command support, refer to 5.2.16. Set Debug Log (SLOG,<hex8>).

7.5.3 Software Requirements
The following are the software requirements:

* Microchip Bluetooth Low Energy Virtual Sniffer Tool - Microchip provides a Bluetooth Low Energy
Virtual Sniffer Tool package that contains the necessary files, including a Python executable to

127

@ MICROCHIP

run the virtual sniffer functionality. For downloading the Bluetooth Low Energy Virtual Sniffer
Tool, go to the Bluetooth Low Energy Virtual Sniffer Tool (v1.00).

+ For downloading the Wireless Protocol Suite, go to the Wireless Protocol Suite (v2.35 or later)
from Teledyne LeCroy.

- -wps-2.35_22.4.29031.29650 or the later version

Note: In this user guide, for testing the virtual sniffer, the software version used is -
wps-2.35_22.4.29031.29650.

7.5.4 \Virtual Sniffer Tool Usage

This section talks about the necessary software/tool installation guidance and the steps for
capturing and parsing the HCI sniffer packets through the Microchip Sniffer Tool.

7.5.4.1 System Requirements
The following are the system requirements:

+ Install the Teledyne LeCroy Wireless Protocol Suite (WPS) v2.35 (or later) to the default root path.
+ Copy liveimport.ini from the Teledyne Lecroy Wireless folder to the btDebugging tool folder.

+ Connect a UART-to-USB cable (for example, FTDI cable) to the Debug UART TXD pin (Debug
UART is primarily used for debugging purposes during development or troubleshooting stages
of hardware or software.) of the RNBD350 module, then connect to the system. This COM port
needs to be passed as an argument when executing the Microchip BLE Sniffer Tool.exe.
Note: The COM port associated with the UART-to-USB cable.

7.5.4.2 Tool Execution

The following are the steps for tool execution:

1. Open the command prompt from the WPS installed location, then
run the Microchip BLE Sniffer Tool.exe using the following command
Microchip BLE Virtual Sniffer Tool.exe <"com port"> <"Baud Rate"> ,for
example, Microchip BLE Virtual Sniffer Tool 23 921600 (see the following figure).
Note: The recommendation is to configure the virtual sniffer SERCOM at the highest Baud Rate
(921600) and fixed to 921600 for efficient usage of the sniffer.

Figure 7-38. Command Line Execution of Virtual Sniffer Tool

B CA\Windows s\Systern32\cmd.exe - Microchip_BLE_Sniffer_Tool.exe 23 921600

2. Go to Start>Wireless Protocol Suite 2.35, then click Wireless Protocol Suite 2.35tolaunch
the application.

Figure 7-39. Wireless Protocol Suite Application

& Wireless Protocol Suite 2.35
App

*

3. When the following start-up window displays, select “Virtual Sniffing” as the data capture
method.

@ MICROCHIP

128

https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/SoftwareTools/Microchip_BLE_Virtual_Sniffer_Tool_v1.00.zip
https://fte.com/support/WPS-download.aspx?demo=X240&iid=X240

Figure 7-40. Wireless Protocol Suite Application GUI

]

Wireless Protocol Suite

Recent

Your recent capture files will appear here.
Open Fle...

Start

Select the data capture method:
Virtual Sniffing

4. This opens the tool GUI where the packets are displayed. Click Start Record to start the capture.

Figure 7-41. Wireless Protocol Suite GUI Start Recording

Mew Capture File - Teledyne LeCroy Wireless Protocol Suite 2.20 (Virtual Sniffing)
File Edit Wiew Capture Options Help

w B /| ®startRecord <‘_’; oG T B E v

5. The captured packet appears in the WPS tool and the Microchip BLE Sniffer Tool
command prompt displays the total number of captured HCI packets (see the following figure).

Figure 7-42. Virtual Sniffer Tool Command Line Execution View

6. The WPS tool displays all the packets (see the following figure).

@ MICROCHIP

129

Figure 7-43. Wireless Protocol Suite GUI

7.5.5 WPS Tool Analysis

7.5.5.1 GUI Analysis

The captured packets start displaying on the Wireless Protocol Suite (WPS) tool after clicking
Start Record. The captured packets are categorized in different layers in the tool GUI for easy
understanding and analysis. The layers displayed in the tool include the following:

+ Bluetooth Virtual Transport

« HCI
« L2CAP
« ATT
* Errors

Figure 7-44. GUI Analysis

HCI: Bluetooth Virtual Transport HCI L2CAP EYRM Errors 160 frames displayed

Upon selection of each tab, the tool displays the subsequent packets under each layer. Selecting any
specific frame displays the packet with detailed information under the decode section.

7.5.5.2 Packet Analysis
The RNBD350 module acts as a peripheral device and advertizes its presence to all the nearby
Bluetooth central devices. The central device initiates the scanning request and also a connection to
the RNBD350 module. The service/characteristics discovery are carried out during the connection
procedure. Upon connection, the devices are eligible to exchange data. The following section
categorizes and provides further details about different packets.

7.5.5.2.1 Advertisement
Upon connection, the RNBD350 module acts in the peripheral role and starts advertisement. A
nearby Central device can scan the available devices nearby and initiate a connection request. The

130

@ MICROCHIP

following figure illustrates the detailed packet information is displayed in the Decode section of the

GUL.

Figure 7-45. Wireless Protocol Suite Application Packet View Advertisement

S New Capture File - Teledyne LeCroy Wireless Protocol Suite 2.35 (Virtual Sniffing)

File Edit View Capture
@ @ F msiprecrd O, W, VT VW B @

All Frames

HCI: Bluetooth Virtual Transport [fgl@i

Options

Technology: | HCI

[

Help

Opcod. -

Opcode Command

v

L2CAP ATT Errors 92 frames displayed

Search o ©

Event ~

Decode
[#- Bluetooth Virtual Transport:

=- HCl:

Status

Event
Command
Event
Command
Event
Command
Event
Command
Event
Command
Event
Command
Event
Event
Event
Event
Event
Event
Event
Event

7.5.5.2.2 Connection

The selected frame indicates the HCI LE Connection Complete event (see the following figure).

02036
0x2036
02036
042037
052037
02038
052038
02037
02037
0x2033
0x2033
01009
0x1003

LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
Info Params
Info Params

wtended_Advertising_Param...

HCI_Command_Complete

HCI_LE_Set_Extended_adwvertising_Param...

HCI_LE_Set_Extended_Advertising_Param...

HCI_Command_Complete

HCI_LE_Set_Estended_Adwvertising_Data

HCI_LE_Set_Extended_Advetising_Data

HCI_Command_Complete

HCI_LE_Set_Extended_Scan_Response_...

HCI_LE_Set_Extended Scan_Response_.

HC|_Command_Complete

HCI_LE_Set_Extended_Advertising_Data

HCI_LE_Set_Extended_Advertising_Data

HCI_Command_Complete

HCI_LE_Set_Estended_adwertising_Enable

HCI_LE_Set_Extended_Advertising_Enable

HCI_Read_BD_ADDR
HCI_Read_BD_ADDR

HCI_Command_Complete

HCI_Command_Complete

HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received

Succe:

Succes

Succe:

Succes

Succe:

Succe:

Succe:

Packet from: Controller
& HCI Command
Opcode: 0x2036
Opcode Group (OGF): LE Controller command

Total Length: 25
Advertising_Handle: 0x00
(s)- Advertising_Event_Properties

- Primary_Advertising_Interval
Channel 39: Yes

.. Channel 38: Yes
Channel 37: Yes

- Peer_Address: 0x00-00-00-00-00-00

&

Advertising_Tx_Power: 10 dBm
Primary_Advertising_PHY: LE TM
Secondary_Advertising_Max_Skip
Secondary_Advertising_PHY: LE 1M
Advertising_SID: 0x00
Scan_Request_Notification_Enable: No

Raw Data

Under the “Decode” section of the frame, the user can see the details related to the connection
parameters. This packet is grouped under the HCI tab.

Figure 7-46. Wireless Protocol Suite Application Packet View Connection Complete

E New Capture File - Teledyne LeCroy Wireless Protocol Suite 2.35 (Virtual Sniffing)

File Edit View

Summary

All Frames

o -

1 0x1009
0x1009

1 0x2033
0x2033
1 0x2022
0x2022
1 0x2020
0x2020

<

Capture

Technology: HCI

HCI: | Bluetooth Virtual Transport [@

Options Help
@ @ / Wswprecrd O W, YT N B @

v

Search]

L2CAP | ATT Efrors 2,536 frames displayed

Opcod.. ~

Info Params
Info Params

LE Controller
LE Controller
LE Controller
LE Controller

LE Controller
LE Controller

Opcode Command =

HCI_Read_BD_ADDR
HCI_Read_BD_ADDR

HCI_LE_Set_Extended_Advertising_Enable
HCI_LE_Set_Extended_Advertising_Enable
HCI_LE_Set_Data_Length
HCI_LE_Set_Data_Length

HCI_LE_Remote_Connection_Parameter_...
HCI_LE_Remote_Connection_Parameter_...

Event ~ Status ~

HCI_LE_Scan_Request_Received
HCI_Command_Complete Success
HCI_LE_Scan_Request_Received
HCI_LE_Scan Request Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
HCI_LE_Scan_Request_Received
Request_Received

e

HCI_LE_Channel_Selection_aAlgarithm

HCI_LE_Advertising_Set_Teminated Success
HCI_Command_Complete Success
HCI_Command_Complete Success
HCI_LE_Read_Remote_Features_Co... Success
HCI_LE_Data_Length_Change
HCI_LE_Remote_Connection_Parame...
HCI_Command_Complete Success

X

Han®

0s0(
0s0(

0x0(
0x0(
0x0(
0x0(
0x010
0x0(
0x0l v

Decode

Frame 272: (Controller) Len=21
[#)- Bluetooth Virtual Transport:
- HCl:

Command: HCI_LE_Set_Extended Advertising Parar

Advertising_Filter_Policy: Process scan and connecti

Packet from: Controller
- HCl Event
Event: HCI_LE_Meta_Event
-Total Length: 19
Subevent_Code: HCI_LE_Connection_Complete
-Status: Success
.. Connection_Handle: 0x0071
Role: Peripheral
-Peer_Address_Type: Random
- BD_ADDR: 0x40-d9-78-57-cf-41
Connection_Interval: 45.00 ms

-Max_Latency: 0 events

... Supervision_Timeout: 5000 ms

 Central_Clock Accuracy: 50 ppm

@ MICROCHIP

131

7.5.5.2.3 Service Discovery
After the successful connection, a request will be sent to determine the supported service and
characteristic. The format of the request frame is ATT READ BY GROUP TYPE REQ. To this frame,
a response frame will be sent that contains the supported service/characteristics information. The
frame format is ATT READ BY GROUP TYPE RESP. This packet is grouped under the ATT tab.

The following figure represents the service request inquiry and response frame. The RNBD350
module supports the following services:

* Generic Access Profile/Generic Attribute Profile

+ Transparent UART Profile Service (represented as Unknown UUID[0x5343]

* Device information service

+ OTA profile service (represented as Unknown UUID[0x4850]

Figure 7-47. Wireless Protocol Suite Application Packet View Service Discovery

New Capture File - Teledyne LeCroy Wireless Protocol Suite 2.35 (Virtual Sniffing) =
File Edit View Capture Options Help
% @ F Bstprecrd O @ YT M B @ v

Summary bl Decode X
Frame 291: (Host) Len=16

All Frames | Technology: A HCI Searct x
i o e 9o [#- Bluetooth Virtual Transport:
HCI: | Bluetooth Virtual Transport HCI L2CAP [EXRM Errors 160 frames displayed - HCl:
- L2CAP:
© Frameft - Role = Opcode = Hande -~ uuiD - Database ~ Dire™ ;J ATT:

Role: Unknown
Signature Present: No
PDU Type is Command: No
Opcode: ATT_READ_BY_GROUP_TYPE_RSP
*Database: 71(C)
Length: 6
= Attribute data
=- Group Handle-Value pair
Starting Attribute Handle: 128

ATT_ERROR_|

ATT_READ_BY_TYP... Include IC

]
|
|
]
)
|
)
]
)
1)
1]
1]
304 ATT_READ_BY_TYP.. 7 Central Address Resolution 71(0) Unl Short UUID: Device Information
7)
]
)
)
)
)
)

Ending Attribute Handle: 146
301 ATT_ERROR_RSP 71(C Unl = Primary Service Declaration
303 ATT_READ_BY_TYP... Characteristic 7(C Unl (- Service Declaration
306 ATT_READ_BY_TYP... Characteristic (C Unl
307 ATT_ERROR_RSF 7 71(C] Unl
303 ATT_READ_BY_TYP.. 16 Include kil Unl
310 ATT_ERROR_RSP 16 71(C) Unl
312 ATT_READ_BY_TYP.. 16 Characteristic (C Unl
313 ATT_READ_BY_TYP.. 23 Database Hash 71(C] Unl
315 ATT_READ_BY_TYP.. 23 Characteristic 7

7.5.5.2.4 Data Transfer
After establishing the connection, both the peripheral and central devices are allowed to transfer
data. This data communication happens OTA using the transparent UART service.
Data Sent from the Central Device (Mobile) to the Peripheral Device (RNBD350) Module

The central device sends data ‘0’ to the RNBD350 module. The Opcode ATT WRITE CMD frame
represents the data. The user can see the data value under the “Decode” section. The data shown is
the corresponding hex value. This packet is grouped under the ATT tab.

132

@ MICROCHIP

Figure 7-48. Wireless Protocol Suite Application Packet View Data Transfer

W 6 F Bswprecrd O W, T M B @ v

uite 2.35 (Virtual Sniffi

sy <0

All Frames | Technology: | HCI

HCI: Bluetooth Virtual Transport HCI L2CAP

B.. ~ Frame#
61
62
64
65
67
68
70

Role

Al Errors 31 frames displayed

Opcode =
ATT_READ_REQ
ATT_READ_RSP
ATT_READ_REQ
ATT_READ_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_HAMDLE_WaLU...
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_CMD
ATT_HAMDLE_VALL...

Handle ~
132

138

a7

a7

a3

]

a7
87

a7

a7

a2

Search

uio -

Not Mapped
Not Mapped
Not Mapped
Not Mapped
Not Mapped
Not Mapped
Mot apped
Mot b apped

Not kapped
Not Mapped

Not Mapped
Mot Mapped

Not Mapped
Not Mapped

Frame 90: (Host) Len=12
6 o x B - Bluetooth Virtual Transport:
[-Q HCl:
- LZCAP:
Database = i & ATE:
7(C) Role: Unknown
e Signature Present: No
0 PDU Type is Command: Yes
71 Opeode: ATT_WRITE_CMD
;}I{g *Database: 71(C)
710 Attribute Handle: 85
7110 Attribute Type: Not Mapped
7110 I Unknown Attribute Data: Ox 30 I
]
e}
]
e}
(C)
7(C)
7(C)
()
i)
7(C)
70
() v

Data Sent from the Peripheral Device (RNBD350) Module to the Central Device (Mobile)

The RNBD350 module sends data ‘1’ to the central device. The Opcode ATT HANDLE VALUE NTF
frame represents the data. The user can see the data value under the “Decode” section. The data
shown is the corresponding hex value. This packet is grouped under the ATT tab.

Figure 7-49. Wireless Protocol Suite Application Packet View Data Transfer

B

apture File

® & / ®SstopRecord

All Frames | Technology: = HCI

HCI: Bluetooth Virtual Transport HCI L2CAP

B.. = Frame#

61
62
64
65
67
]
70
Il
73
74
76
77
79
a0
a1
84
2
87
a8
90
9

~H

yne LeCroy
File Edit View Capture Options

Role

Help
A% TR Be v
] -

YN Errors 31 frames displayed

Opcode =
ATT_READ_REQ
ATT_READ_RSP
ATT_READ_REQ
ATT_READ_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_HANDLE_VALU..
ATT_WRITE_RSP
ATT_WRITE_REQ
ATT_wRITE_RSP
ATT_WRITE_REQ
ATT_WRITE_RSP
ATT_WRITE_CMD
ATT_HANDLE_VALU...

Handle =
132

138

a7

a7

a3

88

a7
87

87

a7

Search

uuip -

Mot Mapped
Not Mapped
Mot Mapped
Mot Mapped
Mot Mapped
Not Mapped
Mot Mapped
Mot Mapped

Not Mapped
Not Mapped

Mot Mapped
Mot Mapped

Mot Mapped
Mot Mapped

e ©

Database
70
70
(o]
71(C)
70
T
70
]
al(w]
710)
70
m(c
70
7(c)
i (w]
710)
7C)
()
70
7(C)
71c)

x B Frame 91: (Host) Len=12

- Bluetooth Virtual Transport:

- HCl:

(- L2CAP:

B-ATE:
Role: Unknown
Signature Present: No
PDU Type is Command: No
Opcode: ATT_HANDLE_VALUE_NTF
*Database: 71(C)
Attribute Handle: 82

I -~ Unknown Attribute Data: Ox 31 I

@ MICROCHIP

133

7.5.5.2.5 Disconnection

The central device initiates disconnection and closes the existing Bluetooth Low Energy link between

the central and peripheral devices. This packet is of type event and grouped under the HCI tab.

The HCI Disconnection Complete event eventwith a status of Success is displayed under the

“Decode” section in the log.

Figure 7-50. Wireless Protocol Suite Application Packet View Disconnection

E New Capture File - Teledyne LeCroy Wireless Protacol Suite 2.35 (Virtual Sniffing)

File Edit View Capture

. Type =
ACLData
Event
Event
Event
Event
Event
Event
Event
Command
Event
Command
Event
Command
Event
Command
Event
Command
Event
Command
Event
Event

After the disconnection, the peripheral device starts its advertisement again, and the central device

% & /8 SstwopRecord

Optioens Help

Al Frames | Technology: A HCI

HCL: Bluetooth Virtual Transport

[

02036
022036
0x2036
0x2036
0x2037
0x2037
0x2038
022038
0x2037
0x2037
0x2039
0x2033

Opeod.. ~

LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller
LE Controller

S w YTMB@® v
] o<

Search (- I +]

L2CAP ATT Errors 2,596 frames displayed

Opcode Command ~

HCI_LE_Set_Extended_Advertising_Param...
HCI_LE_Set_Extended_Advertising_Param...
HCI_LE_Set_Extended_advertising_Param...
HCI_LE_Set_Extended_Advertising_Param...

HCI_LE_Set_Extended_Advertising_Data
HCI_LE_Set_Estended_Advertising_Data

HCI_LE_Set_Estended_Scan_Response_...

HCI_LE_Set Ewtended Scan_Response_.
HCI_LE_Set_Extended_advertising_D ata
HCI_LE_Set_Extended_Advertising_Data
HCI_LE_Set_Extended_advertising_Enable
HCI_LE_Set_Estended_advertising_Enable

Event ~

HCI_MNumber_Of_Completed_Packets
HCI_LE_Data_Length_Change
HCI_LE_Data_Length_Change
HCI_LE_Data_Length_Change
HCI_LE_Data_Length_Change
Data_Length_Change

HCI_Command_Complete
HCI_Command_Complete
HCI_Command_Complete
HCI_Command_Complete
HCI_Command_Complete

HCI_Command_Complete
HCI_LE_Scan_Request_Received

can initiate the connection as per the requirement.

x B

Status

Success

Success

Success

Success

Success

Success

>

A

v

Frame 423: (Controller) Len=6
(- Bluetooth Virtual Transport:
Type: Event Packet
B~ HCk:
Packet from: Controller
&- HCl Event
Event: HC|_Disconnection_Complete
Total Length: 4
Status: Success
Connection_Handle: 0x0071
Reason: Remote User Terminated Connection

@ MICROCHIP

134

8. RNBD350 Device Firmware Update Procedure

8.1 Introduction

This section describes the detailed procedure of updating the device firmware on the RNBD350
module. New firmware can add Bluetooth Low Energy-specific functionality for new revisions of
the Bluetooth specification, as well as provide a way to fix bugs discovered in the current device's
Bluetooth operation.

Microchip periodically releases new firmware for the RNBD350 device and it is always recommended
to update the device with the latest version of firmware. Microchip distributes the intended
firmware files via the official webpage of the RNBD350. The format of the distributed firmware
filesis .bin.

The command set support available in the RNBD350 module put forward the opportunity to update
the device firmware in the RNBD350 in two possible ways. Each feature is intelligently designed and
implemented to meet the application requirement.

1. OTA firmware update - The OTA is a protocol that allows Bluetooth Low Energy devices to receive
a firmware image OTA from another Bluetooth Low Energy device. The Microchip-defined OTA
profile and service enables firmware upgrades over the Bluetooth Low Energy link using Generic
Attribute Profile (GATT). The Bluetooth Low Energy OTA protocol defines the communication
between the OTAU target and the OTAU manager. The OTAU manager can be a mobile device
(i0S/Android) or any Bluetooth Low Energy device that implements the OTA GATT client protocol
that transfers the upgrade firmware to the OTAU target. The OTAU target implements the OTA
GATT server protocol to receive the new firmware image.

This approach strictly recommends having a successful and secure Bluetooth Low Energy link
connection between two devices.

a. OTA from mobile application - The mobile application is the OTAU manager that holds the
new upgradable image and sends it to the RNBD350 device over the Bluetooth Low Energy
link.

2. Serial Device Firmware Update (Serial DFU) - In this method, the firmware update on the
RNBD350 device is achieved via serial UART communication. The RNBD350 command set
supports the DFU commands to carry out serial DFU. To make use of the DFU update feature,
first, configure the device in the DFU mode. This method is very similar to the direct firmware
update procedure using a wired connection. In practice, the DFU commands are invoked in
a specific order to successfully update the firmware. For more information about the DFU
commands, refer to the 5.7. DFU Commands.

135

@ MICROCHIP

8.2 OTA DFU Process

Figure 8-1. OTA DFU Process

Decryption and signature

Encrypted and signed o
verification

RNBD45x Device

BLE OTAU DFU File OTAU Manager OTAU Target |
(Upgradeble Firmware I::> (Smart phone/GATT (RNBD45x Device) |:> (New image)
image with Metadata) client)

+ Bluetooth Low Energy OTA DFU file (firmware image encrypted, signed) is uploaded to the OTAU
Manager. OTAU manager can be a smartphone or any Bluetooth Low Energy device that supports
the OTA client.

+ OTAU target (RNBD350) queries the OTAU manager and fetches a new firmware image.
+ Theimage is decrypted, validated and applied.

8.2.1 Bluetooth Low Energy OTA DFU Image File Definition

The OTAU binary export file is distributed as part of the regular firmware release package. The OTAU
file is segmented as an OTAU header and Flash image. The Bluetooth Low Energy OTAU header
contains the OTAU file information necessary for the DFU client (mobile application) to perform the
OTAU DFU procedure, and it is not transferred OTA. Whereas, the Flash image is divided as metadata
and executable firmware. The metadata contains information about the manufacturer, firmware
version, firmware size, firmware signature and so on.

Unlike the OTAU header, the Flash image is encrypted to avoid the risk of exposing the plain text to
mobile applications and the Cloud. The Flash image is encrypted using the AES CBC engine using a
private key and AES key and is, later, decrypted at the device side when the image is received OTA.

@ MICROCHIP

136

Figure 8-2. OTA DFU Image File Definition

wo)
—
m
&)
—
7
I
(D
Q
Sl
(1)
-

Metadata Header
Manufacture ID
Firmware Version
Firmware Size

Firmware Signature

Flash Image

Executable Firmware
(Encrypted)

* Flash image - Meta-data Header + Executable Firmware. This is full image content that is
programmed in the device Flash.

+ Meta-data header - Flash image that has a metadata header, metadata payload and metadata
footer that gives the Bootloader firmware information about the location of the firmware
image, security decryption information, signature, sequence number and more. Digital signatures
ensure the authenticity of the image and integrity of the data in the image. A digital signature
also ensures that the data within the image was not modified (preserving integrity) and is intact
as it was generated at the source.

+ OTAU file encryption - The executable firmware can be encrypted. Encrypting the image ensures
the confidentiality of the data. This makes it so no unauthorized parties can peek at the contents
of the image. Only the end device can decrypt the image. The method in use is the AES128-CBC
encryption. The OTAU header is not encrypted.

+ Bluetooth Low Energy OTAU header - OTAU file information for Bluetooth Low Energy OTA DFU
Client (for example, mobile application) to perform OTA DFU procedures.

8.2.2 Microchip OTAU Profile

The Bluetooth Low Energy OTAU profile is a GATT-based profile. It is designed to perform device
firmware updates via OTA. In general, the mobile acts as the OTAU client role and the Bluetooth Low
Energy device as the OTAU server role. OTAU Service (OTAS) is a Microchip proprietary service with a
16-byte service UUID, and it is mandatory for the OTA server.

There must be only one instance of the OTAS in a device. The OTAS must be instantiated as a
primary service.

The service Universally Unique Identifier (UUID) value must be set to 4D434850-253D-46B3-9923-
E61B8E8215D7.

@ MICROCHIP

137

There are three characteristics defined under the service.

Table 8-1. OTAU Characteristics UUID

Universally Unique Identifier (UUID)

OTA Feature 4D434850-22E4-4246-AF03-0C4A2F906358
OTA Data 4D434850-34D9-40A6-BA7E-56F57C8CD478
OTA Control Point 4D434850-9327-45DE-8882-C97F39028A76

Table 8-2. OTAU Characteristics Definition

Characteristic Name Mandatory Properties Optional Properties | Security Permissions

OTA Feature Read None Encryption required
OTA Data M Write Without Response, Notify None Encryption required
OTA control point M Write, Notify None Encryption required

1. OTAU feature characteristics - Use it to expose the supported image type to the device. Its
content carries the supported image type:

- Firmware image
- Meta data

Property: Write
2. OTAU data characteristics - Allows the OTAU client to send upgradable image data to the OTAU
server.
Properties:
- Write
- WithoutResponse
- Notify

3. OTAU control point - The OTAU client uses it to issue the operational requests to the OTAU
server. Notification of this control point is used by the server to perform a dedicated operation.
The operation includes the following;:

- Firmware update request
- Firmware update start

- Firmware update complete
- Device reset request

Properties:
- Write
- Notify

8.2.3 Five Stages of OTAU Procedure

1. Discover device supported feature - In this step, the OTAU client enquires the image types
supported by the server. The OTAU client sends a read request to the server and the server will
notify the client in response.

2. Claim to execute firmware update - The OTAU client issues the firmware update request
operations using the OTAU control point characteristics and, for the no error conditions, the
OTAU server allows the firmware update procedure. The package content from the client
contains the size of the new firmware image, identity of the new firmware image, the version
of new firmware image and the new firmware image encrypt method.

The OTAU server, then, responds with the result code, the maximum fragmented image size, the
start index of the image and the version of the current firmware image.

138

@ MICROCHIP

3. Start firmware update - The OTAU client issues the firmware update start operation and for
the no error condition, the OTAU server starts the firmware update procedure. The OTAU client
sends the image type, and the server responds with a result code. The server, then, updates the
process.

4. Firmware distribution - The OTAU client initiates to send the fragmented image to the OTAU
server. When the total length of received fragment reaches the Max Fragmented image size, the
OTAU server decrypts the image and starts to write to the Flash. After the write operation to
Flash, the server verifies the written content.

5. Firmware updates complete - The OTAU client informs the OTAU server after the completion of
the firmware update process. The OTAU client issues a device reset request to the OTAU server,
and the server a software reset.

8.3 Firmware Upgrade Procedure using Microchip RNBD Utility PC Tool

The methods serial DFU and OTAU Manager is another RNBD350 used Microchip RNBD Utility

tool on the PC. The software package for the RNBD350 is available for download from the official
webpage of the RNBD350 device. The software package contains a Microchip RNBD Utility Tool. This
contains a GUI-based executable for windows/Linux/iOS, and a separate Python script that can be
run from the command line. As per the user’s requirement, the user can select the executable or
command line script for updating the firmware.

As discussed earlier, the RNBD350 provides two possible options to update the firmware. The
GUI-based utility tool executable is a unified tool that incorporates both serial DFU and OTPAC
features into one workspace. In the tool, each feature is separated into different tabs and works
independently.

In this section, we will individually explore the procedure steps that need to be followed for each
firmware update feature.

8.3.1 Serial DFU

Figure 8-3. Firmware Update Using Serial DFU

o3 H = 30
RNBD350 ADD ON BOARD,

139

@ MICROCHIP

8.3.1.1 Prerequisites
Hardware

* RNBD350 Device
Software Tools

+ Microchip RNBD Utility Tool
8.3.1.2 Connect RNBD350 Device to PC

Connect the RNBD350 device or evaluation board to the PC using the USB cable.

8.3.1.3 COM Port Identification
The following are the steps to check the COM port:

1. To open the Device Manager window, go to Start Menu>Control Panel>Hardware and Sound.

Click Device Manager.

The following window appears. Under Ports (COM & LPT), the user can check which COM port is

assigned to the RNBD350 device.

Figure 8-4. Device Manager

% Device Manager

File Action View Help

& 7 5H

% Cisco AnyConnect Virtual Miniport Adapter for Wi
@ Intel(R) Ethernet Connection (13) 1219-V
¥ Intel(R) Wi-Fi 6 AX201 160MHz

¥ Realtek USB GbE Family Controller #2
&# WAN Miniport (IKEv2)

&F WAN Miniport (IP)

&# WAN Miniport (IPv6)

¥ WAN Miniport (L2TP)

&7 WAN Miniport (Network Monitor)

&# WAN Miniport (PPPOE)

&F WAN Miniport (PPTP)

@ WAN Miniport (SSTP)

ﬂ USB Serial Port (COM85)
= Print queues
n Processors
B Security devices
v [Sensors
! HID Sensor Collection V2

In this scenario, the RNBD350 device is connected to USB Serial Port (COMS85).
8.3.1.4 Serial DFU GUI Based Execution

8.3.1.4.1 Launch the Tool
The following are the steps to launch the Microchip RNBD Utility tool:

@ MICROCHIP

140

To launch the tool, double click RNBD DFU OTAPC Vx.x.x.exe.
The tool has two separate tabs for each feature. By default, the DFU tab is selected.
From the “Serial Ports” drop-down list, select the respective COM Port.

From the “Baud Rate” drop down list, select the baud rate. For example, select 115200.
Click Connect to continue.

u kN

Figure 8-5. Microchip RNBD Utility Tool Serial DFU Tab View

& Microchip RNBD Utility Tool — O *

Serial DFU QTAPC

Serial Ports COMB3 ~ Refresh Baud Rate ~ T
Disconnect

Firmware Selection Browse Update

Progress

Status

6. After clicking the Connect button, the following buttons become active:
- Browse

- Disconnect
The OTAPC tab is grayed out.

7. If the connection is successful, the console text log displays the COM port and baud rate.

@ MICROCHIP

141

Figure 8-6. Microchip RNBD Utility Tool Serial DFU Tab Connection Established

% Microchip RNED Utility Tool — O .

OTAPC
Serial Ports COMBSS5 Refresh Baud Rate 115200 Connect
Disconnect
Firmware Selection Browse Update
Progress

Status

I:ormect,ed to CCM85 with baud rate 115200'

8.3.1.4.2 Update the Firmware

Browse
The following are the steps to select the new RNBD350 firmware:

1. Click the Browse button and navigate to the folder where the new RNBD350 firmware is located
in the system.

@ MICROCHIP

142

Figure 8-7. Microchip RNBD Utility Tool Serial DFU Tab Firmware Image Browse View

2. Upon selection, the tool console text log space displays the header file-related information of the

JE_ Microchip RMED Utility Tool
Serial DFU QTAPC

Senal Ports COom85

Firmware Selection Browse

Progress

Status

Refrech Baud Rate

Update

115200 Connect

Disconnect

,g' Open
« o v

Organize » MNew folder

~
[This PC

<« RNBD330_Usergui.. » firmware v O

Mame

_J 3D Objects

D RMBD350_1.0.0.7.0TA.bin

[Desktop

Documents

* Downloads

J"J Music

=] Pictures

m Videos

i Windows (C:)

- Mew Volume (D:)

|_j Metwork
[CHE-DK-WSGLAB43 v o<

X
Search firmware yel
Date modified

2/26/2024 9:28 PM

File name:

selected binary file.

@ MICROCHIP

143

Figure 8-8. Microchip RNBD Utility Tool Serial DFU Tab Firmware Image Selected

Update

& Microchip RNBD Utility Toal — O
Serial DFU QTAPC

Serial Ports COMS85 Refresh Baud Rate 115200 Connect

Disconnect

Firmware Selection Update

Progress

Status

Connected to COMES with baud rate 115200

Selected File: D:/FQ4 FY24/RNBD350_Userguide/firmware/RNBD350_1.0
.0.7.0TA.kin

———————— OTA bin file header detail
Header Version:Buckland

Image Encryption: Encrypted

Image ID: Se000002

BREEEAValid Firmware Image@BEERE
Image Revision: 1.0.0.7

File Type: BLE + Zigbee CTA File
CRC: 793a

Image Size: 356880 bytes

The following are the steps to update the firmware:
1. Click Update to start the firmware flashing.

@ MICROCHIP

144

Figure 8-9. Microchip RNBD Utility Tool Serial DFU Tab Firmware Update

JE_ Microchip RMED Utility Tool — O
Serial DFU gTAPC

Senal Ports COMS85 Refresh Baud Rate 115200 Connect

Disconnect
Firmware Selection Browse Update

Progress: 4% | ——
IStatus:Updating firmware...l I 57696/356880 completed I

[Sent Command]: DFO

[Response]: END

DFU

[Status] :Enter DFU mode Success.

[Command] :DFU Update Reguest

[Image Size] :00057210

[Header Data]:01

[Image ID]:9e000002

[CRC] :793a

[Sent Command]: DFUJ,00057210,01,%=000002,793a
[Response]: DFOO, 0800

DFU>

[Status] :DFU Update Reguest Success

[Command] :DFU Update Start

[Sent Command]: DFUS

[Response]: AOE

DFU>

[Status] :DFU Update Start Success

[Command] :DFU Image Distribution

Updating. .

[Initiated Firmware Distribution

2. During the firmware update, the tool displays the following information:

Progress label that displays the percentage of completion
Live Progress bar update view

Status label that displays the current status

Total bytes completed

Background update status on console text view

@ MICROCHIP

145

Figure 8-10. Microchip RNBD Utility Tool Serial DFU Tab Firmware Update

[o L BRE

Serial DFU QTAPC

Serial Ports COMB5 Refresh Baud Rate

Firmware 5election Browse

115200 Connect

Disconnect
Update

Progress 4% | ——
I 57696/356880 completed I

IStatu s:Updating firmware...

[Sent Command]: DFU

[Response] : END

DFU>

[Status] :Enter DFU mode Success.

[Command] :DFU Update Reguest
[Image Size] :00057210
[Header Data]:01

[Image ID]:9=000002
[CRC]:793a

[Sent Command]: DFUU,00057210,01, 92000002, 7932

[Response] : DFOO, 0800
DFU>
[Status] : DFU Update Reguest Success

[Command] : DFU Update Start

[Sent Command]: DFUS

[Response] : ACE

DFU>

[Status] : DFU Update Start Success

[Command] :DFU Image Distribution

Initiated Firmware Distribution

Updating.

3. After completion, the tool updates the following:

* A Success pop-up window appears that displays the message: DFU Update Completion!; click

OK to continue.
* The progress label indicates: 100%.
+ The status changes to: DFU Update Completel.
+ The bytes completed matches the total bytes.

+ Thereis a Firmware Distribution Complete message on the console text log.

@ MICROCHIP

146

Figure 8-11. Microchip RNBD Utility Tool Serial DFU Tab Firmware Update Complete

4. After clicking OK, the total time taken for the firmware update is displayed in the console text

log.

E_ Microchip RNED Utility Tool . O

Serial DFU QTAPC

Serial Ports COomas Refresh Baud Rate 115200 Connect
Disconnect

Firmware Selection Browse Update

Progress: 100%]

Status:DFU update complete! 356880/356880 completed

Tru-
[Status] :Enter DFU mode Success.

[Command] : DFU Update Reguest

[Image Size]:00057210 -
[Header Data] :01 . Update Complete X
[Image ID]:5e000002
[CRC]:793a

[Sent Command]: DEUU, 00@S o DFU Update Complete!
[Response]: DFUOU,0800

DFU>
[Status] :DFU Update Redqfs

=i

[Command] : DFU Update S5t
[Sent Command]: DEUS
[Response]: AOK

DFU>

[Status] :DFU Update Start Success

[Command] : DFU Image Distribution
[Sent Command]: DFUD,Size,Data
Initiated Firmware Distribution

Updating.
[Status] :DFU Image Distribution Success

[Command] : DFU Update Complete

L PR —— Tt

@ MICROCHIP

147

Figure 8-12. Microchip RNBD Utility Tool Serial DFU Tab Firmware Update Complete Time

Disconnect

& Microchip RMED Utility Toal — O

Serial DFU QTAPC

Serial Ports Comas Refresh Baud Rate 115200 Connect
Disconnect

Firmware Selection Browse

Progress: 100% I

Status:DFU update complete! 356880/356880 completed

[Sent Command]: DFUS

[Response]: AOK

DFU>

[Status] :DFU Update Start Success
[Command] : DFU Image Distribution
[Sent Command]: DFUD,S5ize,Data
Initiated Firmware Distribution

Updating.

[Status] :DFU Image Distribution Success

[Command] : DFU Update Complete

[Sent Command]: DFUOC

[Response] : DFU> VALIDATING

$VALIDATICON SUCCESSS:

[Status] :DFU Update Complete Success

[Command] : DFU Terminate

[Sent Command]: DFUE

[Response] :

DFU> Reboot
=1 . DET] i =

DFU Complete: E1 e time 34.74931621551514

AEAAAAAAXAEADFT Successful ***radaa kA d ok
———————————————— Completed!-——--—--——-——mmm

The following are the steps to disconnect:
1. Click Disconnect.

2. Close the tool.

@ MICROCHIP

148

Figure 8-13. Microchip RNBD Utility Tool Serial DFU Tab Disconnect

[

Serial DFU QTAPC

Serial Ports COMB5 Refresh Baud Rate 115200 Connect
Disconnect

Firmware 5election Browse Update

Progress: 100% I

Status:DFU update complete! 356880/356880 completed

[Sent Command]: DFUS

[Response] : AOK

DFU>

[Status] :DFUJ Update Start Success

[Command] :DFU Image Distribution
[Sent Command]: DFUD, Size,Data
Initiated Firmware Distribution

Updating. . . .
[Status] : DFU Image Distribution Success

[Command] :DFU Update Complete

[Sent Command]: DFOC

[Response] : DFU> VALIDATING
$VALIDATION SUCCESSS

[Status] :DFU Update Complete Success

[Command] :DFU Terminate
[Sent Command]: DFUE
[Response] :

DFU> Reboot

[Status] :DFU Terminate Success

DFU Complete: Elapse time 34.74531621551514
\\\\\\\\\\\\ DE‘U S-Jccessf-_ll-\-\-\-\-\-\-\-\-\-\-\-\-\-\
———————————————— Completed!

8.3.1.5 Command Line-Based Execution

The Microchip RNBD Utility tool package has a Python script attached to carry out the command line
execution of the serial DFU procedure. This Python script incorporates the serial DFU feature.

Before executing the Python script from the command line, it is mandatory to install all dependent
Python modules/packages. For more details, refer to the README file available in the tool package.

Open the command prompt at the location where the Python script is located. The script expects
certain arguments to be passed while invoking:

python RNBD 350 451 Serial DFU Tool V1.0.2.py -c COM85 -b 115200 -s DFU -f
RNBD350 1.0.0.07.0TA.bin.

The user can initiate the execution by passing the following arguments:
+ ¢ - COM port number

* b-Baudrate

+ s - Feature selection (DFU)

+ £ - Firmware file selection

149

@ MICROCHIP

Figure 8-14. Serial DFU Using RNBD DFU OTAPC Tool Command Line Execution

BN C:\Windows\System32\cmd.exe

Microsoft Windows [Version 10.6.19845.4046]
(c) Microsoft Corporation. All rights reserved.

C:\Users\. _ \Downloads\testing_tool>python "RNBD_358_451 Serial DFU Tool V1.0.© 2.py" -c COM85 -b 115200 -s DFU -f RNBD350_1.6.0.7.0TA.bing

8.3.1.5.1 Firmware Update
+ Upon execution of the script, the command prompt displays the following details:
- COM Port and Baud rate selection

- Header file information of the firmware files
- Initiation and current progress

Figure 8-15. Serial DFU Update Using RNBD DFU OTAPC Tool Command Line Execution: Firmware Update

*ial_DFU_Tool_Vi1.@.8 2 COM85 -b 115200 -s DFU - RNBD35@_1.8.@.7.0TA.bin

: 9edeeoo2

d Firmware Ima

: BLE + Zigbee OTA File

+ After completion, the command prompt displays the following details:

- Firmware Distribution Complete
- Firmware Validation Complete

- Elapse time in seconds

@ MICROCHIP

150

Figure 8-16. Serial DFU Update Using RNBD DFU OTAPC Tool Command Line Execution: Firmware Update
Complete

[Status]:DFU Update Start S

[Command]:DFU Image Distribution

Sent Command: DFUD,S

[Command]:DFU Update Complete

[Sent Command]: DFUC

LIDATING

[Command]:DFU Terminate
[Sent Command]: DFUE

[Response]:
DFU> Reboot

[Status]:DFU Terminate Suc

DFU Complete: Elapse time 34.494761466

8.4 Firmware Upgrade Using Mobile App (MBD)

To perform the firmware upgrade using a mobile app, the OTA DFU process involves a combination
of HOST OTA DFU and Serial DFU processes. Initially, the firmware image is sent from the OTAU
manager, such as a mobile device, which initiates the HOST DFU process. This process ensures that
the firmware image is securely transferred through the RNBD350 and, subsequently, saved on the
host device. After the transfer and storage are complete, the tool will initiate the serial DFU process.
This step involves writing the previously saved firmware image onto the RNBD350 itself. Completing
this process results in the successful upgrade of the firmware within the RNBD350. Thus, the OTA
DFU in the RNBD350 comprises both the HOST DFU and serial DFU, ensuring a reliable and efficient
update mechanism.

@ MICROCHIP

151

Figure 8-17. Firmware Update Using MBD and Microchip RNBD Utility Tool

I ‘ RNBD Utility Tool ‘ I
C

il
Microchip Biluetooth Data

00000
Qo000

BLE UART Ble Sensor

=& o | &N
5 A ° . 4

ELE Provisioner BLE Smart

BLE Connect Beacon Ranging

BLE Sensor Node BLE OTA

8.4.1 Prerequisites
Hardware

* RNBD350 Device
Software Tools

* Microchip RNBD Utility Tool

« Microchip Bluetooth Data App for iOS or Android - Available on AppStore (for iOS) or Google Play
Store (Android)

152

@ MICROCHIP

Figure 8-18. Installing Microchip Bluetooth Data App

10:55 a
< Q
Microchip
D Microchip *«-‘ Bluetooth Data
Microchip Technology Inc
Bluetooth Data e

TECHNOLOGY INC GET

Microchip Technology Inc

4.1%
254 reviews ® 19 MB Rated for 3

Microchip Bluetc

00000
0000

BLE UART

MICROCHIP

M icrocHip
B LuerootH

D ata

About this app >

An app platform that supports Bluetooth data
features for MCHP BT platforms

Tools

Data safety -

Beacon Ranging
MBD Version

MBD in Playstore(Andriod) MBD in App Store(iOS)

8.4.2 Connect RNBD350 Device to PC
Connect the RNBD350 device or evaluation board to the PC using the USB cable.

8.4.3 COM Port Identification
The following are the steps to check the COM port;

1. To open the Device Manager window, go to Start Menu>Control Panel>Hardware and Sound.
Click Device Manager.

The following window appears. Under Ports (COM & LPT), the user can check which COM port is
assigned to the RNBD350 device.

. 153
@ MICROCHIP

Figure 8-19. Device Manager

'_.l.d Device Manager

File Action View Help

&= [4
[Cisco AnyConnect Virtual Miniport Adapter for Wi
? Intel(R) Ethernet Connection (13) 1219-V
¥ Intel(R) Wi-Fi 6 AX201 160MHz
¥ Realtek USB GbE Family Controller #2
¥ WAN Miniport (IKEv2)
& WAN Miniport (IP)
& WAN Miniport (IPv6)
& WAN Miniport (L2TP)
& WAN Miniport (Network Monitor)
& WAN Miniport (PPPOE)
&7 WAN Miniport (PPTP)
¥ WAN Miniport (SSTP)

USB Serial Port (COMS8S5)
» =l Print queues
> n Processors
> Y Security devices
v [@ Sensors
B HID Sensor Collection V2

In this scenario, the RNBD350 device is connected to USB Serial Port (COMS85).

8.4.4 Transfer the OTAU bin file to the iPhone

This document for the OTA update procedure refers to iPhone only. For Android mobile, follow the
same procedure.

iPhone

Copy the OTAU file to MBD by email.

+ Send the OTAU bin file to the personal email account via email.
+ Open the attached OTAU file.

+ Tap the share icon (see the following figure).

154

@ MICROCHIP

Figure 8-20. Microchip Bluetooth Data Interface

Done RNBD350_1.0.0.7.0TA.bin M

RNBD350_1.0.0.7.0TA.bin

MacBinary archive
357 KB

+ Tap the MBD icon (see the following figure). After launching the MBD application, the OTAU file is
copied to the MBD inbox folder.

155

@ MICROCHIP

Figure 8-21. Save Firmware to MBD

10:45 %)

Done RNBD350_1.0.0.7.0TA.bin

e

RNBD350_1.0.0.7.0TA X
Archive - 357 KB

©® fal g

[~

TECHNOLOGY INC

AirDrop MBD Notes Gmail nRF
Copy @
New Quick Note
Save to Files B
Edit Actions...

8.4.5 OTA DFU GUI Based Execution

8.4.5.1 Launch the Tool
The following are the steps to launch the Microchip RNBD Utility tool:
1. To launch the tool, double click RNBD DFU OTAPC Vx.x.x.exe.

2. The tool has three separate tabs for each feature. By default, the DFU tab is selected and need
to select OTA DFU tab for the Firmware upgrade using mobile app.

3. From the “Serial Ports” drop-down list, select the respective COM Port.

From the “Baud Rate” drop down list, select the baud rate. For example, select 115200.
5. Click Connect to continue.

. 156
ﬁ\ MICROCHIP

Figure 8-22. Microchip RNBD Utility Tool OTA DFU Tab View

& Microchip RNBD Utility Tool — [m} *

Serial DFU OTAPC OTADFU

Serial Ports COomas v Refresh Baud Rate 115200) v Connect

Progress Update

Status

Disconnect

6. After clicking the Connect button, the following buttons become active:
- Update

- Disconnect
The Serial DFU and OTAPC tab is grayed out.

7. If the connection is successful, the console text log displays the COM port and baud rate.

o 157
@ MICROCHIP

Figure 8-23. Microchip RNBD Utility Tool OTA DFU Tab Connection Established

& Microchip RNBD Utility Tool — O
Serial DFU QTAPC OTADFU

Serial Ports COMB5 Refresh Baud Rate 115200

Progress Update

Status
Disconnect

Connected to COMES with baud rate 115200

8. Click the Update button.
Upon clicking the update button the tool will be ready for OTA DFU procedure.

Figure 8-24. RNBD350 Device Connection Request Message

E’_ Microchip RMNBD Utility Tool — O
Serial DFU OTAPC OTA DFU

Serial Ports COMB5 Refresh Baud Rate 115200 Connect

Progress

Status

Disconnect

Connected to COMES with baud rate 115200

8.4.6 Receive and Update the Firmware
The following are the steps to select the new RNBD350 firmware:

1. Turn on mobile Bluetooth®, and open the MBD application.

As shown in the consoletext log, the user must establish a connection from the MBD app.

By default, the RNBD350 is programmed to behave in the Data mode, where the device
advertises during power-up. The devices that advertise the Bluetooth Low Energy packets are
called peripheral devices. Each peripheral device has a unique advertising name. The mobile
acts as a Bluetooth Low Energy central device, scans the surrounding Bluetooth Low Energy

advertisements and lists all the available devices in the scan list.
Tap OTA DFU in the MBD application.

5. Select the RNBD350_XXXX from the scan list (XXXX means the last two bytes of the device BD

address).

@ MICROCHIP

158

Figure 8-25. Microchip Bluetooth Data OTA DFU Interface

“ RNBD350_03AC
LLLLE ST

6. The central device (mobile application) now gets connected with the device, and connection-
related logs are visible on the tools’' console.

159

@ MICROCHIP

Figure 8-26. RNBD350 Device Connection Log in Microchip RNBD Utility Tool Terminal

7. When connected, tap Select Image to choose the available firmware file. The OTAU firmware

. Microchip RNBD Utility Tool
Serial DFU OTAPC OTADFU

Serial Ports COMB3 Refresh Baud Rate 115200

Progress

Status

Connected to COMES with baud rate 115200

#*Establish connection with the RNBD350 Device from the MBD app**

Host OTA Started

Connect

Update

Disconnect

BLE Connection Established successfully!

image file copied in step 4 is visible on the screen.

@ MICROCHIP

160

Figure 8-27. Microchip Bluetooth Data OTA DFU Firmware Image Selection

RNBD350_03AC

Device Firmware version:

Upon selecting the image shown above, the below selection displays.

161

@ MICROCHIP

Figure 8-28. Microchip Bluetooth Data App OTA DFU Browse Firmware Image

RNBD451_1.1.0.17.0TA

/]
Version: 1.1.0.17

Image id: RNBD451(0x9B000001)

RNBD451_1.0.0.10.0TA

o111| Version: 1.0.0.10
|1n11

Image id: RNBD451(0x9B000001)

RNBD350_1.0.0.7.0TA

o0111| Version: 1.0.0.7
|1n11

Image id: RNBD350(0x9E000002)

8. After confirmation of the firmware version, click OK to continue.

162

@ MICROCHIP

Figure 8-29. Microchip Bluetooth Data DFU OTA Firmware Version Confirmation

9. The firmware receipt is initiated and displayed in the console log and mobile app, which

RNBD350_03AC Update

Current version : 1.0.0.7

Update version : 1.0.0.7

Ok Cancel

represents the status of the procedure's progress.

@ MICROCHIP

163

Figure 8-30. Firmware Update in Progress: MBD OTA DFU View

RNBD350_03A9

v Device Firmware version: 1.0.0.7

v Update Firmware Version: 1.0.0.7

43008/356880 Bytes, 12.33 s

Figure 8-31. Microchip RNBD Utility Tool OTA DFU Firmware Image Receive in Progress

Z_ Microchip RNED Utility Tool — m| bt
Serial DFU OTAPC OTADFU

Serial Ports comes Refresh Baud Rate 115200~ s

Progress 0% I | Upaite
Status:Receiving firmware...

Connected to COM85 with baud rate 115200

*%*Ezgtablish connection with the RNBD350 Device from the MBD app*¥®

Host OTA Started
BLE Connection Established successfully!
Host OTA Request receilved from peer device
Host OTA Distribution inprogress........

o 164
@ MICROCHIP

10. The mobile application and the Microchip Utility Tool display confirmation messages about the
successful OTA firmware receipt: “OTA update successful” and “Received complete firmware

data”.

Figure 8-32. Microchip RNBD Utility Tool OTA DFU Firmware Image Receive Complete

E&'__ Microchip RMBD Utility Tool _ O e

Serial DFU OTAPC OTADFU

Serial Ports COomas Refresh Baud Rate 115200 Connect

Progress100% -]

Status:Receiving firmware...

Disconnect

Connected to COMES with baud rate 115200

Establish connection with the RNBD350 Device from the MBD app

Host OTA Started
BLE Connection Established successfully!
Host OTA Regquest received from peer device

Host COTA Distribution inprogress........

Host OTA Completed! Received Complete Firmware Data.

[Command] :Validation Start
[Sent Command]: OTAV,01

Response: bk'DFUO> '
[Status] :Validation Start OK!

[Command] :Validation Success
[Sent Command]: OTAV,00

Response: b'DFUO> °
[Status] :Validation Successful!

@ MICROCHIP

165

RNBD350
RNBD350 Device Firmware Update Procedure

Figure 8-33. MBD OTA DFU Firmware Receive Complete

< Back RNBD350_03AC Cancel

v Update Firmware Version: 1.0.0.7

v 356880/356880 Bytes, 106.42 s

User Guide DS50003684A - 166

@ MICRDCHIP © 2024 Microchip Technology Inc. and its subsidiaries

RNBD350
RNBD350 Device Firmware Update Procedure

Figure 8-34. MBD OTA DFU Firmware Receive Complete

RNBD350_03AC

OTA update successfully

Update version = 1.0.0.7
Speed = 356880 Bytes/
106.72 s

11. After successfully receiving the OTA firmware, The Bluetooth Low Energy connection with the
MBD app will disconnect and will proceed with the serial DFU update. Click OK in the pop-up
dialog.

User Guide DS50003684A - 167

@ MICFIDCHIP © 2024 Microchip Technology Inc. and its subsidiaries

Figure 8-35. Microchip RNBD Utility Tool OTA DFU Firmware Image Receive Completed

)

Serial DFU OTAPC OTADFU

Serial Ports COM3s Refresh Baud Rate 115200

Progressi100% I

Status:Receiving firmware...

Connected to COMES with baud rate 115200

Establish pp
,,,,,,,,,,,, E_ status X

BLE Connecti

Host OTA Req o Received complete firmware image. Proceed to Serial DFU
Host CTA Dis|

Host OTA Com

[Command] :Val

[Sent Comma

Response: b'DFU> '
[Status] :Validation Start OK!

[Command] :Validation Success
[Sent Command]: OTAV,00

Response: b'DFU> '
[Status] :Validation Successful!
BLE Connection Terminated

—]

Connect

Update

Disconnect

12. During the firmware update, the tool displays the following information:
- Progress label that displays the percentage of completion

- Live Progress bar update view

- Status label that displays the current status

- Total bytes completed

- Background update status on console text view

@ MICROCHIP

X

168

Figure 8-36. Microchip RNBD Utility Tool OTA DFU Tab Firmware Update Progress

JE_ Microchip RMBD Utility Tool — O
Serial DFU OTAPC OTA DFU

Serial Ports COME5 Refresh Baud Rate 115200 Connect
o i | ..Update |
Status:Updating firmware... 43008/356830 completed

Disconnect

[Status] :Received Current Firmware Version
[Command] :Enter DFU mode

[Sent Command]: DFU

[Response] : END

DFI>

[Status] :Enter DFU mode Success.
[Command] : DFU Update EReguest

[Image S5ize]:00057210

[Header Data]:01

[Image ID]:5=000002

[CRC]:793a

[Sent Command]: DFUU,00057210,01,9=000002,793a
[Response] : DFUT, Q800

DET=

[Status] :DFU Update Request Success
[Command] : DFU Update Start

[Sent Command]: DFUS

[Response]: ACK

DET=

[Status] :DFU Update Start Success
[Command] :DFU Image Distribution
[Sent Command]: DFUD,S5ize,Data
Initiated Firmware Distribution

Updating.

13. After completion, the tool updates the following:

- A Success pop-up window appears that displays the message: “DFU Update Completion!”.

Click

OK to continue.

- The progress label indicates: 100%.

- The status changes to: “DFU Update Complete!”.

- The bytes completed matches the total bytes.

- There is a Firmware Distribution Complete message on the console text log.

@ MICROCHIP

169

Figure 8-37. Microchip RNBD Utility Tool OTA DFU Tab Firmware Update Complete

E_ Microchip RMED Utility Tool - O
Serial DFU OTAPC OTA DFU
Serial Ports COMas Refresh Baud Rate 115200 T
Progress: 100% U
Status:DFU update complete! 356880/356880 completed

Disconnect

[Image ID]:%9=000002
[CRC]:793a

[Sent Command]: DFUU, 00| -
[Response]: DFOU, 0800 L, Update Status
DEU>

[Status] :DFU Update Redq

[Sent Command]: DFUS
[Response]: RACK

[Status] :DFU Update Stal

o DFU Update Complete!
[Command] :DFU Update St

DFU>

[Command] :DFU Image Distribution
[Sent Command]: DFUD,Size,Data
Initiated Firmware Distribution

Updating.
[Status] :DFU Image Distribution Success

[Command] :DFU Update Complete

[Sent Command]: DFUC

[Response] : DFU> VALIDATING
FVALIDATION SUCCESS%®

[Status] :DFU Update Complete Success

[Command] :DFU Terminate
[Sent Command]: DFUE
[Response]:

DFU> Reboot

14, After clicking OK, the console text log displays the total time taken for the firmware update along

with the “HOST OTA Successful” message.

@ MICROCHIP

170

Figure 8-38. Microchip RNBD Utility Tool OTA DFU Tab Firmware Update Complete Time

£, Microchip RNBD Utility Tool — m]
Serial DFU OTAPC OTA DFU

Serial Ports COMaE5 Refresh Baud Rate 115200 Connect

Up:::i:ate

Progress: 00% I

Status:DFU update complete! 356880/356880 completed
Disconnect

[Command] : DFU Update Start

[Sent Command]: DFUS

[Response]: ACK

DFU=

[Status] :DFU Update S5tart Success

[Command] : DFU Image Distribution
[Sent Command]: DFUD,Size,Data
Initiated Firmware Distribution

Updating.
[Status]:DFU Image Distribution Success

[Command] : DFU Update Complete

[Sent Command]: DFUC

[Response]: DFU> VALIDATING
$VALIDATICN SUCCESS®

[Status]:DFU Update Complete Success

[Command] : DFU Terminate

[Sent Command]: DFUE

[Response] :

DFU> Reboot

[Status]:DFU Terminate Success

DFU Complete: Elapse time 34.741550035055215
Kk AXAXAKXAAAEX*DEFT Successful *Axdr Atk d ik
———————————————— Completed!
Device Rebooted

Host OTA Successful

8.4.7 Disconnect
The following are the steps to disconnect:
1. Click Disconnect.

2. Close the tool.

@ MICROCHIP

171

Figure 8-39. Microchip RNBD Utility Tool OTA DFU Tab Disconnect

z

icrochip RNED Utility Tool - O X
Serial DFU_ OTAPC OTA DFU

Serial Perts coMm85 Refresh Baud Rate 115200]

Progress: 00% I

Status:DFU update complete! 256820/356820 completed

[Command] :DFU Update Start
[Sent Command]: DFUS

[Response]: ACK

DEU>

[Status]:DFU Update Start Success

[Command] :DFU Image Discribution
[Sent Command]: DFUD,Size,Data
Initiated Firmware Distribution

Updating. . . .
[Status]:DEU Image Distribution Success

[Command] : DFU Update Complete
[Sent Command]: DFUC

[Response] : DFU> VALIDATING
$VALIDATION SUCCESS%

[Status] :DFU Update Complete Success

[Command] :DFU Terminate

[Sent Command]: DFUE

[Response] @

DFU> Reboot

[Status] :DFU Terminate Success

DFU Complete: Elapse time 34.77117156982422

xaxxxararraxDFY SuccessFul**FAxesxaxnasx
ompleted!

Device Rebooted

172

@ MICROCHIP

9. Appendix A. Bluetooth Low Energy Fundamentals

9.1 Definition of Characteristic Access Commands

When creating a connection with two Bluetooth Low Energy devices, one device plays the central
role and the other plays a peripheral role. The peripheral device advertises to show its connectable
status, whereas, the central device scans service advertisements and, if required, initiates a
connection to the peripheral device.

After establishing the connection, both peers can initiate bonding. Related security keys are saved in
PDS after successful bonding. Use these keys on the next connection to reduce the time elapsed on
the security procedure.

The following figure illustrates that the Generic Attribute (GATT) profile defines a service framework
using the Attribute (ATT) protocol. This framework defines procedures and formats of services and
their characteristics. The following are the defined procedures:

+ Discovering

+ Reading
+ Writing
+ Notifying

+ Indicating characteristics
In other words, the operation with an arrow between the GATT client and GATT server.

A service definition contains a service declaration and includes definitions and characteristic
definitions. All include definitions, and characteristic definitions contained within the service
definition are considered to be part of the service.

The GATT profile specifies the structure in which profile data is exchanged. This structure defines
basic elements, such as services and characteristics, used in a profile. All of the elements are
contained by attributes. Attributes used in the attribute protocol are containers that carry this
profile data.

The top level of the hierarchy is a profile. A profile is composed of one or more services necessary
to fulfill a use case. A service is composed of characteristics. Each characteristic contains a value and
contains optional information about the value. The service and characteristic and the components
of the characteristic (in other words, value and descriptors) contain the profile data and are all
stored in attributes on the server.

The user can identify each service and its characteristics by its UUID. The UUID takes either a 16-bit
short form or a 128-bit long form. As specified in the Bluetooth core specifications, all Bluetooth
SIG-adopted public services and characteristics have short UUIDs, whereas, the user-defined private
UUIDs are in long form. For details for the Bluetooth SIG-adopted services and characteristics, refer
to www.bluetooth.com/specifications/specs/.

The following table provides details about the accessibility of each characteristic, defined by an 8-bit
characteristic property in bitmap format.

Table 9-1. Characteristic Properties

Extended Property(" 0b10000000 Additional property available

Authenticated Write(™ 0b01000000 Write characteristic with authentication from client to server

Indicate 0b00100000 Indicate value of characteristic with acknowledgment from server to
client

173

@ MICROCHIP

https://www.bluetooth.com/specifications/specs/

........... continued

Notify 0b00010000 Notify value of characteristic without acknowledgment from server to
client

Write 0b00001000 Write value of characteristic with acknowledgment from client to server

Write without response 0b00000100 Write value of characteristic without acknowledgment from client to
server

Read 0b00000010 Read value of characteristic. Send the value from server to client

Broadcast(" 000000001 Broadcast value of characteristic

Note:

1. Currently not supported in the RNBD350 module.

The following figure illustrates the GATT Service in the RNBD350 module. The GATT client can access
the characteristics via ATT protocol in the GATT Server in the peripheral device. After establishing the
connection, the client reads the GATT server service and characteristic UUIDs. The GATT client can
access the characteristic values by using Write, Read, Indication and Notifications.

Write-REQ enables the client to update characteristic values on the peripheral's GATT server.
Perform the write requests by using the RNBD350 CHW commands. For more details on the GATT
characteristic access commands, refer to 5.4.3. GATT Operation on Server Role and 5.4.4. GATT
Operation on Client Role.

A Write-CMD message performs an unacknowledged write from a client to the server.

A client sends Read-REQ to read a characteristic value on the peripheral’s GATT server. Perform the
read requests by using the RNBD350 CHR commands.

The server sends uninvited updates, such as notifications and indications to the client. The client
must enable the notification and indication by configuring a Client Characteristic Configuration
Descriptor (CCCD) to receive the updates. The RNBD350 module is using the CHW command to write
a non-zero value to the CCCD. When the RNBD350 module GATT client role receives a notification,
the %WC, hhhh, ddddddd% message is returned on the UART in the Command mode.

174

@ MICROCHIP

Figure 9-1. GATT Service in RNBD350 Module

RNBD350
[GAP Peripheral, GATT Server]

GATT Server Service

Public Service 16-bit UUID
Characteristic 16-bit UUID
Characteristic 16-bit UUID

Characteristic 16-bit UUID
Properties and Descriptors

Private Service 128-bit UUID
Characteristic 128-bit UUID

Characteristic 16-bit UUID

Characteristic 128-bit UUID
Properties and Descriptors

4 GATT Client Write-REQ

ACK-Write-REQ >

4 GATT Client Write-CMD

P GATT Client Read-REQ

Read-RESP
ead S >

GATT Notification Y

GATT Indication Y

’ ACK-Indication

BTLE Device
[GAP Central, GATT Client]

Central-Client devices
include the following:
- SmartPhone

- Host PC

- Tablet

- RNBD350 Module

- Other BTLE device

@ MICROCHIP

175

10. Appendix B. Transparent UART Service UUIDs

The transparent UART service is instantiated as a primary service. The service UUID of the
transparent UART service is set to 49535343-FE7D-4AE5-8FA9-9FAFD205E455. The transparent
UART service contains the following data characteristics:

+ Transparent UART Transmit (TX) characteristic
« Transparent UART Receive (RX) characteristic
« Transparent UART control point characteristic

The server or the client uses the transparent UART TX characteristic data transmission. After
enabling the Client Characteristic Configuration Descriptor (CCCD) of the transparent UART TX
characteristic, the server sends data to the client using the notify property. The client can also send
data to the server using the write/write without response properties.

The client uses the transparent UART RX characteristic for data transmission. The client can send
data to the server using the write/write without response properties.

The following table shows the UUIDs and properties of the data characteristics.

Table 10-1. Characteristic Properties

Transparent UART TX 49535343-1E4D-4BD9-BA61-23C647249616 Write, Notify
Transparent UART RX 49535343-8841-43F4-A8D4-ECBE34729BB3 Write, WriteNoResponse
Transparent Control Point 49535343-4C8A-39B3-2F49-511CFF073B7E Write, WriteNoResponse,
(TCP) Notify

176

@ MICROCHIP

11.

Appendix C: Command Summary Quick Reference
The following table summarizes the ASCIl commands.

Table 11-1. Command Summary Quick Reference

System Configuration

SS
GK

G<char>
\Y%

D

!
SF,<1,2>
0

R, 1

SR

SLOG
GLOG
VOS

SVD

GVD

SW

GW
SPTA
GPTA
GAP - General
5

SN

GNR

SGA

SGC

M

SO

MTP
MRTP

GAP - Advertising

A
IA/IS/NA/NS

IAE/NAE/ISE/NSE

IPE

IRA

@ MICROCHIP

Default Service Configure
Get Connection Status
Echo

Enter Command Mode
Exit Command Mode

Set Enter Command Character
Set Status Delimiter

Get Configuration

Query Firmware Version
Get Local Information
Remote Command Mode Control
Factory Reset

Shutdown

Reboot

Set Application Options
Set Debug Log

Get Debug Log Setting
Get Silicon Version

Set Vendor Data

Get Vendor data

Set Pin Function

Get Pin Function

Set PTA

Get PTA Setting

Set Device Name With Address
Set Device Name

Get Remote Device Name

Set RF Power in Advertisement
Set RG Power in Connected State
Get Signal Strength

Low Power Control

Read Local TX Power

Read Remote TX Power

Start Advertisement

Set Advertisement Data

Set Extended Advertisement Data

Set Extended Advertisement Parameter

Get Local Advertisement Address

177

........... continued

Y
SDO

GDO

IB/NB
STB/GTB
GAP - Scan

F

FE

X

GAP - Connection
ST

T

C
C,<0,1>,<address>
Cc<1-8>

CE

CSPHY

CRPHY

K, 1

z

GAP - Security
SA

SP

B

JA

JB

Jc

JD

U

LB

&SEP

&SGP

GATT - Generic Access Service Setting

SDA

GATT - Device Information Service Setting

SDF
SDH
SDM
SDN
SDR
SDS

GATT - GATT Operation on Server Role

PC
PS
Pz

@ MICROCHIP

Stop Advertising

Set Deep Sleep Advertising

Get Deep Sleep Advertising Parameters
Set Beacon Data Immediately

Set Beacon Advertising Parameter

Start Bluetooth® Low Energy Scanning
Start Extended Bluetooth Low Energy Scanning
Stop Bluetooth Low Energy Scanning

Set Central Initial Connection Parameter
Request Connection Parameter Update
Connect Last Bonded Device

Connect Device by Address

Connect Specific Bonded Device

Connect Device with Extended Parameter
Set PHY Preference

Get PHY Preference

Disconnect Link

Cancel Create Connection

Set Pairing Mode

Set Fixed Pin Code

Start Bonding Process

Add One Device Into Accept List
Add Bonded List Into Accept List
Clear Accept List

Display Accept List

Unbond Device

List All Bonded Devices
Enable/Disable Local Privacy

Get Local Privacy setting

Set Appearance

Set Firmware Version
Set Hardware Version
Set Model Name

Set Manufacturer Name
Set Software Revision

Set Serial Number

Define Service Characteristic
Define Service UUID
Clear Customized Services

178

........... continued

Ls List Customized Service

SI Service Changed Indication

SHR Read Local Characteristic Value

SHW Write Local Characteristic Value
GATT - GATT Operation on Client Role

CHR Read Remote Characteristic Value
CHW Write Remote Characteristic Value
CHWM Write Remote Characteristic Value for Multiple Links
CI Discovery Remote Services

LC List Remote Services

LCM List Remote Services for Specific Link

Data Transmission For Multi-link
IE Send Transparent Data
Peripheral Commands

SB Set UART Baud Rate

| T Set Digital Input and Read Port
SBI Set UART Baud Rate Immediately
|0 Set Digital Output Port

EIM Set Event Indication Mask

GEI Get Event Indication Value

SIL Set Link Quality Indication

GIL Get Link Quality Indication Setting
@, 4 Read ADC Input Voltage

S@ Set ADC Reference Factors

SPMU Set PMU Mode

GPMU Get PMU Mode Status

STI Set UART TX Indication

GTI Get UART TX Ind Setting

DTM Enable Device Test Mode

DFU Enter DFU Mode

DFUU DFU Update Request

DFUS DFU Update Start

DFUD DFU Image Distribution

DFUC DFU Update Complete

DFUE Terminate DFU Operation

OTAV Host MCU notify RNBD350 the Validation Status
OTAA Allow OTA DFU or MCU Request RNBD350 Continue Transmit

Payload Fragment

179

@ MICROCHIP

12. Document Revision History
The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

04/2024 Document Initial revision

@ MICROCHIP

180

Microchip Information
The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to
make files and information easily available to customers. Some of the content available includes:

+ Product Support - Data sheets and errata, application notes and sample programs, design
resources, user’'s guides and hardware support documents, latest software releases and archived
software

+ General Technical Support - Frequently Asked Questions (FAQs), technical support requests,
online discussion groups, Microchip design partner program member listing

+ Business of Microchip - Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip
products. Subscribers will receive email notification whenever there are changes, updates, revisions
or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:
+ Distributor or Representative

+ Local Sales Office

+ Embedded Solutions Engineer (ESE)

+ Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are
also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

* Microchip products meet the specifications contained in their particular Microchip Data Sheet.

+ Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

+ Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip product is strictly prohibited and may violate the Digital
Millennium Copyright Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including
to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided

only for your convenience and may be superseded by updates. It is your responsibility to ensure

181

@ MICROCHIP

https://www.microchip.com/
https://www.microchip.com/pcn
https://www.microchip.com/support

that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer,
LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper
Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge,
ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium,
TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut,
Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication,
CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic
Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge,

IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi,
MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad 1/0, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-LS., storClad, SQI, SuperSwitcher, SuperSwitcher II,
Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense,
VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered
trademarks of Microchip Technology Inc. in other countries.

GestlC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary
of Microchip Technology Inc., in other countries.

182

@ MICROCHIP

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

All other trademarks mentioned herein are property of their respective companies.
© 2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-6683-4347-0

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit
www.microchip.com/quality.

. 183
@ MICROCHIP

https://www.microchip.com/quality

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614

Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Novi, Ml
Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto

Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Hod Hasharon
Tel: 972-9-775-5100
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen

Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

184

https://www.microchip.com/support
https://www.microchip.com

	Introduction
	Features
	1. ASCII Command Interface
	2. Transparent UART
	3. Custom/SIG Defined GATT Services
	4. Remote Command Console

	Table of Contents
	1. Quick References
	1.1. Reference Documentation
	1.2. Hardware Prerequisites
	1.3. Software Prerequisites
	1.4. Acronyms and Abbreviations

	2. Command Mode and Data Mode
	3. Accessing RNBD350 Over UART
	4. Pin Definition
	4.1. Bluetooth Low Energy Status Indication Pin 1 (PB3) and Pin 2 (PB7)
	4.2. Bluetooth Status LED (PB5)
	4.3. ADC (PB1)
	4.4. I/O Level Control
	4.5. UART Mode Switch (PB2)
	4.6. UART RX Indication (PB4)
	4.7. UART TX Indication (PA2)
	4.8. RSSI Indication (PA3)
	4.9. PTA Function

	5. Command Reference
	5.1. Command Details
	5.2. System Configuration Commands
	5.2.1. Default Service Configure (SS,<hex8>)
	5.2.2. Get Connection Status (GK)
	5.2.3. Echo (+[,<text>])
	5.2.4. Enter Command Mode ($$$)
	5.2.5. Exit Command Mode (---)
	5.2.6. Set Enter Command Character (S$,<char>)
	5.2.7. Set Status Delimiter (S%,<pre>,<post>)
	5.2.8. Get Configuration (G<char>)
	5.2.9. Query Firmware Version (V)
	5.2.10. Get Local Information (D)
	5.2.11. Remote Command Mode Control (!,<0,1>[,<hex16>])
	5.2.12. Factory Reset (SF<1,2>)
	5.2.13. Shutdown (O,0)
	5.2.14. Reboot (R,1)
	5.2.15. Set Application Options (SR,<hex16>)
	5.2.16. Set Debug Log (SLOG,<hex8>)
	5.2.17. Get Debug Log Setting (GLOG)
	5.2.18. Get Silicon Version (VOS)
	5.2.19. Set Vendor Data (SVD,<text>)
	5.2.20. Get Vendor Data (GVD)
	5.2.21. Set Pin Function (SW,<hex8>,<hex8>)
	5.2.22. Get Pin Function (GW,<hex8>)
	5.2.23. Set SW PTA (SPTA,<0,1>)
	5.2.24. Get SW PTA Setting (GPTA)
	5.2.25. Set HCI Determination (SH,<0,1>)

	5.3. Gap Commands
	5.3.1. General
	5.3.1.1. Set Device Name With Address (S-,<text>)
	5.3.1.2. Set Device Name (SN,<text>)
	5.3.1.3. Get Remote Device Name (GNR[,<hex16>])
	5.3.1.4. Set RF Output Power (SGA,<0-8>/SGC,<0-8>)
	5.3.1.5. Get Signal Strength (M) / (M,<hex16>)
	5.3.1.6. Low Power Control (SO,<0,1>)
	5.3.1.7. Read Local TX Power (MTP,<hex16>,<hex8>)
	5.3.1.8. Read Remote TX Power (MRTP,<hex16>,<hex8>)

	5.3.2. Advertising
	5.3.2.1. Start Advertising (A[,<hex16>,<hex16>,…])
	5.3.2.2. Set Advertisement Data (IA/IS/NA/NS)
	5.3.2.3. Set Extended Advertisement Data (IAE/NAE/ISE/NSE)
	5.3.2.4. Set Extended Advertisement Parameter (IPE)
	5.3.2.5. Get Local Advertisement Address(IRA[,<hex8>]
	5.3.2.6. Set Fast Advertisement Parameter (STA, <hex16>,<hex16>,<hex16>)
	5.3.2.7. Stop Advertising (Y)
	5.3.2.8. Set Deep Sleep Advertising (SDO,<0,1>,<hex16>)
	5.3.2.9. Get Deep Sleep Advertising Parameters (GDO)
	5.3.2.10. Set Beacon Data (IB/NB)
	5.3.2.11. Set Beacon Advertisement Parameter (STB,<hex16>)
	5.3.2.12. Get Beacon Advertisement Parameter (GTB,<hex16>)
	5.3.2.13. Set Advertisement Enable Configuration (SC,<0-2>)
	5.3.2.14. Get Advertisement Enable Configuration (GC)

	5.3.3. Scan
	5.3.3.1. Start Bluetooth Low Energy Scanning (F[,<hex16>,<hex16>])
	5.3.3.2. Start Extended Bluetooth Low Energy Scanning (FE,<hex16>...)
	5.3.3.3. Stop Bluetooth Low Energy Scanning (X)

	5.3.4. Connection
	5.3.4.1. Set Central Initial Connection Parameter (ST,<hex16>…)
	5.3.4.2. Request Connection Parameter Update (T,<hex16>…)
	5.3.4.3. Connect Last Bonded Device (C)
	5.3.4.4. Connect Device by Address(C,<0,1>,<address>)
	5.3.4.5. Connect Specific Bonded Device (C<1-8>)
	5.3.4.6. Connect Device with Extended Parameter (CE,<0,1>,<address>…)
	5.3.4.7. Disconnect Link (K,1[,<hex16>])
	5.3.4.8. Set PHY Preference (CSPHY,<hex16>…)
	5.3.4.9. Get PHY Preference (CRPHY[,<hex16>])
	5.3.4.10. Cancel Create Connection (Z)

	5.3.5. Security
	5.3.5.1. Set Pairing Mode (SA,<0-5>,[<0,1>])
	5.3.5.2. Set Fixed Pin Code (SP,<4/6 digit pin>)
	5.3.5.3. Start Bonding Process (B[,<hex16>])
	5.3.5.4. Add One Device Into Accept List (JA,<0,1>,<BDA>)
	5.3.5.5. Add Bonded List Into Accept List (JB)
	5.3.5.6. Clear Accept List (JC)
	5.3.5.7. Display Accept List (JD)
	5.3.5.8. Unbond Device (U,<1-8,Z>)
	5.3.5.9. List All Bonded Devices (LB)
	5.3.5.10. Enable Local Privacy (&SEP…)
	5.3.5.11. Get Local Privacy (&SGP)
	5.3.5.12. Set Remote Command Mode Password (SPW,<text>)
	5.3.5.13. Get Remote Command Mode Password (GPW)

	5.4. Bluetooth Low Energy GATT/Profile Commands
	5.4.1. Generic Access Service Setting
	5.4.1.1. Set Appearance (SDA,<hex16>)

	5.4.2. Device Information Service Setting
	5.4.2.1. Set Firmware Version (SDF,<text>)
	5.4.2.2. Set Hardware Version (SDH,<text>)
	5.4.2.3. Set Model Name (SDM,<text>)
	5.4.2.4. Set Manufacturer Name (SDN,<text>)
	5.4.2.5. Set Software Revision (SDR,<text>)
	5.4.2.6. Set Serial Number (SDS,<text>)

	5.4.3. GATT Operation on Server Role
	5.4.3.1. User Customized Service
	5.4.3.2. Define Service Characteristic (PC…)
	5.4.3.3. Define Service UUID (PS,<hex16/hex128>)
	5.4.3.4. Clear Customized Services (PZ)
	5.4.3.5. List Customized Service (LS[,<P,UUID>])
	5.4.3.6. Service Changed Indication (SI)
	5.4.3.7. Read Local Characteristic Value (SHR,<hex16>)
	5.4.3.8. Write Local Characteristic Value (SHW,<hex16>…)
	5.4.3.9. Write Local Characteristic Value for Multiuple Links (SHWM,<hex16>…)
	5.4.3.10. Customized Multiple Services

	5.4.4. GATT Operation on Client Role
	5.4.4.1. Read Remote Characteristic Value (CHR,<hex16>)
	5.4.4.2. Write Remote Characteristic Value (CHW…)
	5.4.4.3. Write Remote Characteristic Value for Multiple Links (CHWM,<hex16>,…)
	5.4.4.4. Discovery Remote Services (CI[,<hex16>])
	5.4.4.5. List Remote Services (LC[,<P,UUID>])
	5.4.4.6. List Remote Services for Specific Link (LCM…)

	5.4.5. Data Transmission For Multi-link
	5.4.5.1. Send Transparent Data (IE,<hex16>,<hex16>,<hex8>….)

	5.5. Peripheral Commands
	5.5.1. Set UART Baud Rate (SB,<H8>,<H8>,<H8>, <H8>)
	5.5.2. Set UART Baud Rate Immediately (SBI…)
	5.5.3. Set Digital Input and Read Port (|I,<hex16>)
	5.5.4. Set Digital Output Port (|O,<hex16>,<hex16>)
	5.5.5. Set Event Indication Mask (EIM, <hex16>)
	5.5.6. Get Event Indication Value (GEI)
	5.5.7. Set Link Quality Indication (SIL,<1/0>, <hex8>, <hex8>)
	5.5.8. Get Link Quality Indication Setting (GIL)
	5.5.9. Read ADC Input Voltage (@,4)
	5.5.10. Set ADC Reference Factors (S@,<hex16>,<hex8>)
	5.5.11. Set PMU Mode (SPMU,<0,1>)
	5.5.12. Get PMU Mode Status (GPMU)
	5.5.13. Set UART TX Indication (STI,<hex8>,<hex8>)
	5.5.14. Get UART TX Ind Setting (GTI)

	5.6. Device Test Mode (DTM)
	5.6.1. Device Test Mode Command (DTM)
	5.6.2. Software Reset Command
	5.6.3. Read BD_ADDR Command
	5.6.4. LE Read Local Supported Features Command
	5.6.5. LE RX Test[v2] Command
	5.6.6. LE TX Test[v2] Command
	5.6.7. LE TX Test[v4] Command
	5.6.8. LE Test End Command
	5.6.9. Command Complete Event

	5.7. DFU Commands
	5.7.1. Serial DFU Procedure
	5.7.1.1. Serial DFU Commands
	5.7.1.1.1. Enter DFU Mode (DFU)
	5.7.1.1.2. DFU Update Request (DFUU…)
	5.7.1.1.3. DFU Update Start (DFUS)
	5.7.1.1.4. DFU Image Distribution (DFUD…)
	5.7.1.1.5. DFU Update Complete (DFUC)
	5.7.1.1.6. Terminate DFU Operation (DFUE)

	5.7.2. Over-the-Air (OTA) DFU Procedure
	5.7.2.1. Command on OTA Upgradable RNBD350 Side
	5.7.2.1.1. Allow OTA DFU (OTAA…)

	5.7.3. Host OTA DFU through RNBD350
	5.7.3.1. Continue Host OTA DFU (OTAA…)
	5.7.3.2. Validate Host OTA DFU (OTAV, <allow/hex8>)

	5.8. Deprecated Commands
	5.9. Command Response and Status Event
	5.9.1. Command Response
	5.9.2. Status Event

	6. HCI Mode
	6.1. HCI Vendor Commands and Events
	6.1.1. HCI VND Bluetooth Sleep Enable
	6.1.2. HCI VND DFU Enable
	6.1.3. HCI VND DFU Request
	6.1.4. HCI VND DFU Start
	6.1.5. HCI VND DFU Packet Distribution
	6.1.6. HCI VND DFU Complete
	6.1.7. HCI VND DFU Exit
	6.1.8. HCI VND Application Version Inquiry
	6.1.9. HCI VND Mode Record Clear
	6.1.10. HCI VND UART Parameter Configuration
	6.1.11. HCI VND PTA Enable
	6.1.12. HCI Hardware Error Event

	6.2. HCI DFU Procedure

	7. Application Demo Scenarios
	7.1. Connecting to the RNBD350 Module Using the Microchip Bluetooth Data Application
	7.2. Transparent UART Connection and Data Transfer using Microchip Bluetooth Data App
	7.2.1. Transparent UART Connection
	7.2.2. Transparent UART Data Transfer and Throughput Measurement
	7.2.2.1. Text Mode

	7.3. Creating and Accessing GATT Services Using UART Commands
	7.3.1. Creating Custom GATT Services
	7.3.2. Accessing the GATT Service Using UART Commands and the Microchip Bluetooth Data Application

	7.4. Module to Module Connection
	7.5. Virtual Sniffer
	7.5.1. Introduction
	7.5.2. Enable Virtual Sniffer
	7.5.3. Software Requirements
	7.5.4. Virtual Sniffer Tool Usage
	7.5.4.1. System Requirements
	7.5.4.2. Tool Execution

	7.5.5. WPS Tool Analysis
	7.5.5.1. GUI Analysis
	7.5.5.2. Packet Analysis
	7.5.5.2.1. Advertisement
	7.5.5.2.2. Connection
	7.5.5.2.3. Service Discovery
	7.5.5.2.4. Data Transfer
	7.5.5.2.5. Disconnection

	8. RNBD350 Device Firmware Update Procedure
	8.1. Introduction
	8.2. OTA DFU Process
	8.2.1. Bluetooth Low Energy OTA DFU Image File Definition
	8.2.2. Microchip OTAU Profile
	8.2.3. Five Stages of OTAU Procedure

	8.3. Firmware Upgrade Procedure using Microchip RNBD Utility PC Tool
	8.3.1. Serial DFU
	8.3.1.1. Prerequisites
	8.3.1.2. Connect RNBD350 Device to PC
	8.3.1.3. COM Port Identification
	8.3.1.4. Serial DFU GUI Based Execution
	8.3.1.4.1. Launch the Tool
	8.3.1.4.2. Update the Firmware
	8.3.1.4.2.1. Browse
	8.3.1.4.2.2. Update
	8.3.1.4.2.3. Disconnect

	8.3.1.5. Command Line-Based Execution
	8.3.1.5.1. Firmware Update

	8.4. Firmware Upgrade Using Mobile App (MBD)
	8.4.1. Prerequisites
	8.4.2. Connect RNBD350 Device to PC
	8.4.3. COM Port Identification
	8.4.4. Transfer the OTAU bin file to the iPhone
	8.4.5. OTA DFU GUI Based Execution
	8.4.5.1. Launch the Tool

	8.4.6. Receive and Update the Firmware
	8.4.7. Disconnect

	9. Appendix A. Bluetooth Low Energy Fundamentals
	9.1. Definition of Characteristic Access Commands

	10. Appendix B. Transparent UART Service UUIDs
	11. Appendix C: Command Summary Quick Reference
	12. Document Revision History
	Microchip Information
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

