
RoHS Compliant

Features

- V_{DS} (V) =100V
- ID =2.8 A (VGS =10V)
- $R_{DS(ON)} < 285m\Omega \text{ (Vgs = 10V)}$
- $R_{DS(ON)} < 305 m\Omega$ (Vgs = 6)

Absolute Maximum Ratings (Ta=25°C)

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		VDS	150	V	
Gate-Source Voltage		Vgs	±20		
Continuous Drain Current @ VGS=10V	Ta=25°C (Note.1)	lo	2.8	А	
			12	A	
Power Dissipation	Ta=25°C (Note.1)	Pp	2.2	W	
	Ta=25°C (Note.2)	FD	1	VV	
Single Pulsed Avalanche Energy (Note.3)		Eas	12	mJ	
Thermal Resistance.Junction- to-Ambient		RthJA	55	°C/W	
Thermal Resistance. Junction- to-Case		RthJC	12		
Junction Temperature		TJ	150	°C	
Storage Temperature Range	Tstg	-55 to 150	C		

Note1: 55°C/W when mounted on a 1 in 2 pad of 2 oz copper

Note2: 118°C/W when mounted on a minimum pad of 2 oz copper

Note3: Starting $T_J = 25$ °C; N-ch: L = 1 mH, IAS = 5 A, $V_{DD} = 135$ V, $V_{GS} = 10$ V.

Electrical Characteristics Ta = 25°C

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VDSS	In=250µA, Vgs=0V	150			V
Zero Gate Voltage Drain Current	IDSS	V _{DS} =120V, V _{GS} =0V			1	uA
Gate-Body leakage current	Igss	V _{DS} =0V, V _{GS} =±20V			±100	nA
Gate Threshold Voltage	VGS(th)	Vps=Vgs Ip=-250µA	2	3.1	4	V
		V _G s=10V, I _D =2.8A			285	
Static Drain-Source On-Resistance	RDS(On)	Vgs=6V, ID=2.4A			305	mΩ
		V _G s=10V, I _D =2.8A , T _j = 125°C			320	
Forward Transconductance	grs	V _D s=10V, I _D =2.8A		4		S

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit
Input Capacitance	Ciss	Vgs=0V, Vps=75V, f=1MHz		295	395	
Output Capacitance	Coss			33	45	pF
Reverse Transfer Capacitance	Crss			2.4	5	
Gate Resistance	Rg			1		Ω
Total Gate Charge		Vgs=0 to 10V, Vps=75V, Ip=2.8A		4.9	7	
	Qg	Vgs=0 to 5V, Vps=75V, Ip=2.8A		2.8	4	۰,۰
Gate Source Charge	Qgs	75/1 000		1.4		nC
Gate Drain Charge	Qgd	VDS=75V, ID=2.8A		1.3		
Turn-On DelayTime	td(on)	ID=2.8A, VDS=75V, RGEN=6Ω, VDS=10V		5.3	11	nS
Turn-On Rise Time	tr			1.3	10	
Turn-Off DelayTime	td(off)			9.8	20	
Turn-Off Fall Time	tf			2.4	10	
Body Diode Reverse Recovery Time	trr	I 2 2 4 d/d - 400 4 // 5 1/ 0		48	77	
Body Diode Reverse Recovery Charge	Qrr	I _F = 2.8A, d _I /d _t = 100A/μs V _{GS} =0		44	70	uc
Maximum Body-Diode Continuous Current	ls				2.8	Α
Diode Forward Voltage	Vsp	Is=2.8A, V _G s=0V (Note.1)		0.82	1.3	V

Note.1: .Pulse Test:Pulse width≤300us,Duty cycle≤2%

Typical Characterisitics

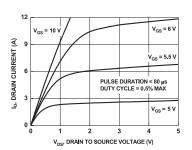


Figure 1. On Region Characteristics

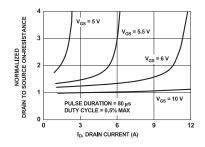


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

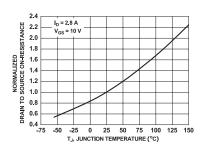


Figure 3. Normalized On Resistance vs Junction Temperature

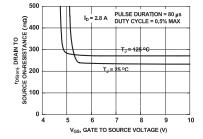


Figure 4. On-Resistance vs Gate to Source Voltage

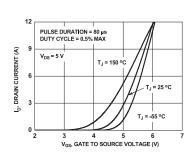


Figure 5. Transfer Characteristics

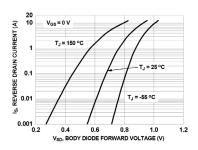


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

Typical Characterisitics

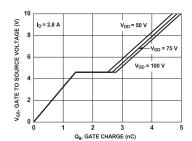


Figure 7. Gate Charge Characteristics

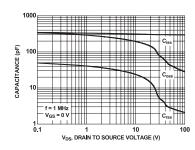


Figure 8. Capacitance vs Drain to Source Voltage

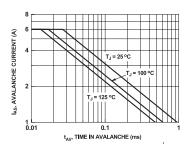


Figure 9. Unclamped Inductive Switching Capability

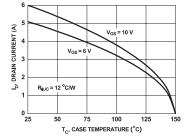
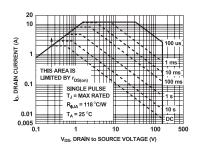



Figure 10.

Current vs Case Temperature

Operating Area

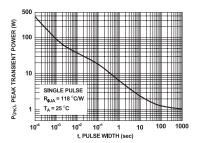


Figure 12. Single Pulse Maximum Power Dissipation

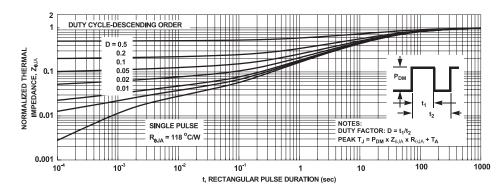
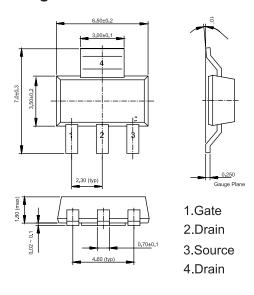



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

Diagram

Part Number Table

Description	Part Number		
MOSFET, N Channel, 2.8A, 150V, SOT223	FDT86244		

Dimensions: Millimetres

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

